Effects of Pretreatment Processes on Grain Size and Wear Resistance of Laser-Induction Hybrid Phase Transformation Hardened Layer of 42CrMo Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental System
2.2. Material Preparation
2.3. Microstructure Characterization and Austenite Grain Size Testing
2.4. Hardness and Frictional Wear Testing
3. Results and Discussion
3.1. Microstructure Characteristics of Different Pretreatment Processes
3.2. Hardened Layer Surface Microstructure
3.3. Austenite Grain Size and Analysis of Factors Affecting Austenite Growth
3.4. Microhardness of Hardened Layer
3.5. Hardened Layer Friction and Wear Properties
4. Conclusions
- The four pretreatment methods (QT, LIQ, LIN, and LIA) resulted in distinct initial microstructures that strongly influenced austenite grain growth during laser-induction hybrid phase transformation. Tempered sorbite (QT) exhibited coarse austenite grains (139.8 μm) due to its large original ferrite grains and sparse nucleation sites. Lath martensite (LIQ) showed similarly coarse grains (145.52 μm) despite fine initial grains, as a high dislocation density and large-angle grain boundaries promoted rapid grain boundary migration during austenitization. Bainite (LIN) and granular pearlite (LIA) achieved refined grains through dense nucleation sites and Zener pinning by undissolved carbides; the average grain sizes of the hardened layer were 75.49 μm and 78.8 μm, respectively. Granular pearlite further benefited from a high proportion of small-angle grain boundaries (59.4%), significantly hindering grain growth.
- All specimens achieved hardened layer depths exceeding 6.9 mm. Among these, specimens pretreated with LIN and LIA prior to transformation exhibited the highest surface microhardness values (760.3 HV0.3 and 765.2 HV0.3, respectively), representing a 12–15% increase over specimens pretreated with QT and LIQ. This improvement was mainly due to finer martensitic structures formed from refined austenite grains, validating the effectiveness of pretreatment in enhancing surface hardness via grain refinement.
- Specimens pretreated with LIN and LIA prior to laser-induction hybrid phase transformation demonstrated shallow-scratch abrasive wear characteristics, achieving friction coefficients of 0.45 with wear volumes of 161,358.95 μm3 and 140,181.12 μm3, respectively. This represents reductions of 30.7% in friction coefficient and 80% in wear volume compared to only-QT specimens. Conversely, specimens pretreated with QT and LIQ followed by transformation exhibited higher friction coefficients (0.52) and wear volumes exceeding 2.7 × 105 μm3, confirming the direct correlation between grain refinement and wear resistance. Grain refinement enhances the grain boundary density, which effectively impedes dislocation motion and improves the material’s resistance to plastic deformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QT | Quenched and Tempered |
LIQ | Laser-Induction Hybrid Quenching |
LIN | Laser-Induction Hybrid Normalizing |
LIA | Laser-Induction Hybrid Annealing |
References
- Barooni, M.; Ashuri, T.; Sogut, D.V.; Wood, S.; Taleghani, S.G. Floating Offshore Wind Turbines: Current Status and Future Prospects. Energies 2023, 16, 2. [Google Scholar] [CrossRef]
- Ji, H.-B.; Wang, J.-M.; Wang, Z.-Y.; Li, Y.; Cheng, X.-H. The effect of high-temperature ECAP on dynamic recrystallization behavior and material strength of 42CrMo steel. Mater. Sci. Eng. A 2023, 887, 145732. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Tong, W.H.; Chen, Z.J.; Yao, J.H.; Li, Z.G.; Feng, K.; Kovalenko, V.S. Effect of Spot Size on Geometrical Characteristics of Laser Deep Quenching Hardened Layer of 42CrMo Steel. Surf. Technol. 2020, 49, 254–261. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Wu, C.; Wan, M.; Zhao, F. Crankshaft high cycle bending fatigue research based on the simulation of electromagnetic induction quenching and the mean stress effect. Eng. Fail. Anal. 2021, 122, 105214. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Y.; Wang, Q.; Liu, Q.; Wang, L.; Liu, J. Electromagnetic and Thermal analysis of an Intra-layer no-insulation coil during Quench. Phys. C Supercond. Its Appl. 2024, 619, 1354477. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Xu, Z.; Jiang, Q.; Huang, Z.; Chen, X.; Wen, J. Cavitation erosion resistance of the surface layer of 14Cr12Ni3Mo2VN material based on laser shock peening and high-frequency induction quenching. Mater. Today Commun. 2025, 42, 111234. [Google Scholar] [CrossRef]
- Carrera-Espinoza, R.; Valerio, A.R.; Villasana, J.d.P.; Hernández, J.A.Y.; Moreno-Garibaldi, P.; Cruz-Gómez, M.A.; López, U.F. Surface Laser Quenching as an Alternative Method for Conventional Quenching and Tempering Treatment of 1538 MV Steel. Adv. Mater. Sci. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Wu, W.; Chen, X.; Fang, T.; Wang, Y.; Su, C.; Qin, S.; Chen, L. Research on the laser quenching performance of Ti6Al4V-7.3 %Cu alloys fabricated by wire-powder collaborative arc additive manufacturing. J. Alloys Compd. 2024, 1002, 175450. [Google Scholar] [CrossRef]
- Hua, J.; Liu, J.; Liu, F.; Liu, P.; Zhao, X.; Ren, R. Study on strip WEA wear damage and fatigue spalling of U71MnG rail material by laser quenching treatment. Tribol. Int. 2022, 175, 107811. [Google Scholar] [CrossRef]
- Ma, G.; Liu, X.; Song, C.; Niu, F.; Wu, D. TiCp reinforced Ti6Al4V of follow-up synchronous electromagnetic induction-laser hybrid directed energy deposition: Microstructure evolution and mechanical properties. Addit. Manuf. 2022, 59, 103087. [Google Scholar] [CrossRef]
- Jang, J.; Shin, Y.; Lee, J.; Lee, S.H. Precipitation behavior and grain growth of Inconel 718 deposited by induction heating-assisted laser directed energy deposition. Addit. Manuf. 2025, 100, 104678. [Google Scholar] [CrossRef]
- Qiao, Y.; Sun, R.; Yang, Y.; Liu, S.; Wang, X. Microstructure forming mechanism of inconel 625 alloy fabricated by laser/ultra-high (UHF) induction hybrid deposition method. J. Mater. Res. Technol. 2024, 32, 4365–4378. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Huang, H.; Tang, Z.H.; Li, G.C.; Niu, Q.A.; Chen, Z.J.; Du, Y.Q.; Yao, J.H. Rolling Wear and Fatigue Damage Behavior of Laser-Induction Hybrid Quenching on 42CrMo Steel. Chin. J. Lasers 2022, 49, 1. [Google Scholar] [CrossRef]
- Zhang, Q.; Ling, J.; Chen, Z.; Wu, G.; Yu, Z.; Wang, Y.; Zhou, J.; Yao, J. Optimization of Laser-Induced Hybrid Hardening Process Based on Response Surface Methodology and WOA-BP Neural Network. Appl. Sci. 2025, 15, 1975. [Google Scholar] [CrossRef]
- Ding, X.; Wang, W.; Yu, H.; Chen, Z.; Zhang, Q.; Fang, J.; Yao, J. Impact of Induction Temperature on Rolling Contact Fatigue in Laser Solid-State Phase Transformation of U75V. Chin. J. Lasers 2024, 51, 122. [Google Scholar] [CrossRef]
- Mandal, S.; Bhowmik, N.; Tewary, N.K.; Ghosh, P.; Haldar, A. Austenite grain growth and effect of austenite grain size on bainitic transformation. Mater. Sci. Technol. 2022, 38, 409–418. [Google Scholar] [CrossRef]
- He, J.; Wang, Q.; Zhao, L.; Hu, B.; Wang, Q. Competitive growth of martensite/austenite constituent and degenerated pearlite and the impact toughness in the coarse-grained heat-affected zone of a low carbon microalloying steel. J. Mater. Res. Technol. 2025, 36, 789–805. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, H.; Liu, X.; Zhang, Z.; Xie, J. Effect of billet microstructure and deformation on austenite grain growth in forging heating of a medium-carbon microalloyed steel. J. Alloys Compd. 2021, 869, 159326. [Google Scholar] [CrossRef]
- Chamanfar, A.; Chentouf, S.; Jahazi, M.; Lapierre-Boire, L.-P. Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel. J. Mater. Res. Technol. 2020, 9, 12102–12114. [Google Scholar] [CrossRef]
- Lan, P.; Liu, H. Abnormal growth of austenite grain in continuously cast slab during hot charging processes. J. Mater. Res. Technol. 2025, 35, 5052–5066. [Google Scholar] [CrossRef]
- Cao, Y.; Ni, S.; Liao, X.; Song, M.; Zhu, Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R-Rep. 2018, 133, 1–59. [Google Scholar] [CrossRef]
- Li, G.; Chen, D.; Wang, S.; Tong, Y.; Jiang, Y.; Jiang, F. Tailoring microstructure and martensitic transformation of selective laser melted Ti49. 1Ni50. 9 alloy through electropulsing treatment. Mater. Today Commun. 2022, 31, 103437. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Jiang, R.; Xu, W.; Maximenko, A.; Grippi, T.; Torresani, E. Quasi-instantaneous materials processing technology via high-intensity electrical nano pulsing. Sci. Rep. 2024, 14, 434. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Y.; Yu, F.; Wang, Y.; Zhao, Y.; Cao, W. Influence of multiple quenching treatment on microstructure and tensile property of AISI M50 steel. Mater. Lett. 2023, 340, 134175. [Google Scholar] [CrossRef]
- Wang, X.; Shi, X.; Hui, Y.; Chen, B.; Gan, B.; Shen, J. Mechanical behavior and strengthening mechanism of a fine-grained medium carbon steel produced via cyclic oil quenching. Mater. Sci. Eng. A 2023, 866, 144669. [Google Scholar] [CrossRef]
- Huang, H.; Ni, H.; Ju, Y.; Yuan, Z.; Guo, S.; Chang, Y.; Wang, D. Effect of normalizing pretreatment on microstructure and mechanical properties of 28MnB5 steel for high-speed plough. Heat. Treat. Met. 2023, 48, 139–144. [Google Scholar] [CrossRef]
- Li, D.; Zhao, X.; Zhang, H.; Li, J.; Han, H. The effect of network cementite dissolution on the nucleation and growth of prior austenite grains in high carbon low alloy steels. J. Mater. Res. Technol. 2024, 30, 565–579. [Google Scholar] [CrossRef]
- Yuan, S.; Xie, Z.; Wang, J.; Zhu, L.; Yan, L.; Shang, C.; Misra, R.D.K. Effect of heterogeneous microstructure on refining austenite grain size in low alloy heavy-gage plate. Metals 2020, 10, 132. [Google Scholar] [CrossRef]
- Shi, M.H.; Hou, L.; Yin, C.K.; Wang, H.; Di, M. Effect of Initial Microstructure on Austenite Grain Size of Niobium Microalloyed Steels. Phys. Met. Metallogr. 2024, 125, 1707–1717. [Google Scholar] [CrossRef]
- Zhang, Q.; You, L.; Yu, Y.; Chen, Z.; Wang, W.; Anyakin, M.; Yao, J. Preparation of bainite phase microstructure by laser-electromagnetic induction hybrid solid-state phase transformation. J. Mater. Res. Technol. 2024, 33, 526–534. [Google Scholar] [CrossRef]
- GB/T 12444-2006; Metallic Materials-Wear Test Method. Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China: Beijing, China, 2006.
- Liu, H.; Jiang, S.; Pan, F.; Ouyang, W.; Yan, Z. Tribological Performance of New Bearing Friction Pair of Babbitt Alloy and TC4 Titanium Alloy under Oil Lubrication and Dry Friction Conditions. Tribol. Int. 2025, 45, 46–57. [Google Scholar] [CrossRef]
- Pu, J.; Bondarev, S.; Wang, H.; Song, W.; Liu, S.; Jiang, D. Analysis of microstructure and wear resistance of friction stir welded joints of 7075-T6 aluminum alloy. Ferroelectrics 2023, 608, 109–123. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, F.; Tang, S.; Li, C.; Liu, Z. Grain growth behaviors during solution annealing based on the heterogeneous microstructure in hot rolled nuclear grade austenitic stainless steel. Mater. Lett. 2022, 308, 131134. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. Numerical simulation and surface properties of 42CrMo steel treated by plasma nitriding and laser quenching. Metals 2023, 13, 1473. [Google Scholar] [CrossRef]
- Du, C.M.; Li, Y.; Sun, Y.; Fan, X.F.; Zhu, J.Y.; Li, S. Experimental Study on Laser Quenching Hardening of 42CrMo Steel Surface. Mater. Prot. 2022, 55, 160–164. [Google Scholar] [CrossRef]
Pretreatment | Laser Power (kW) | Spot Size | Scanning Speed (mm·s−1) | Induction Power (kW) | Cooling Method | Target Microstructure |
---|---|---|---|---|---|---|
LIQ | 5 | 55 mm × 15 mm | 2.5 | 40 | Water | Lath martensite |
LIN | 5 | 55 mm × 15 mm | 2.5 | 40 | Air | Bainite |
LIA | 2 | 55 mm × 15 mm | 1.5 | 28-20-20 | Air | Granular pearlite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Shen, P.; Chen, Z.; Wu, G.; Li, Z.; Wang, W.; Yao, J. Effects of Pretreatment Processes on Grain Size and Wear Resistance of Laser-Induction Hybrid Phase Transformation Hardened Layer of 42CrMo Steel. Materials 2025, 18, 2695. https://doi.org/10.3390/ma18122695
Zhang Q, Shen P, Chen Z, Wu G, Li Z, Wang W, Yao J. Effects of Pretreatment Processes on Grain Size and Wear Resistance of Laser-Induction Hybrid Phase Transformation Hardened Layer of 42CrMo Steel. Materials. 2025; 18(12):2695. https://doi.org/10.3390/ma18122695
Chicago/Turabian StyleZhang, Qunli, Peng Shen, Zhijun Chen, Guolong Wu, Zhuguo Li, Wenjian Wang, and Jianhua Yao. 2025. "Effects of Pretreatment Processes on Grain Size and Wear Resistance of Laser-Induction Hybrid Phase Transformation Hardened Layer of 42CrMo Steel" Materials 18, no. 12: 2695. https://doi.org/10.3390/ma18122695
APA StyleZhang, Q., Shen, P., Chen, Z., Wu, G., Li, Z., Wang, W., & Yao, J. (2025). Effects of Pretreatment Processes on Grain Size and Wear Resistance of Laser-Induction Hybrid Phase Transformation Hardened Layer of 42CrMo Steel. Materials, 18(12), 2695. https://doi.org/10.3390/ma18122695