Multi-Phase Design Strategy for Synergistic Strength–Ductility Optimization in V-Ti-Cr-Nb-Mo Refractory High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Crystal Structures and Microstructure Evolution
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, W.; Utada, S.; Antonov, S.; Lu, S.; He, S.; Lu, F.; Zheng, W.; Li, L.; Cormier, J.; Feng, Q. Microstructural evolution and creep mechanism of a directionally solidified superalloy DZ125 under thermal cycling creep. J. Alloys Compd. 2023, 947, 169533. [Google Scholar] [CrossRef]
- Grilli, M.L.; Valerini, D.; Slobozeanu, A.E.; Postolnyi, B.O.; Balos, S.; Rizzo, A.; Piticescu, R.R. Critical Raw Materials Saving by Protective Coatings under Extreme Conditions: A Review of Last Trends in Alloys and Coatings for Aerospace Engine Applications. Materials 2021, 14, 1656. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xin, S.; Zhao, Y. Research Progress on the Creep Resistance of High-Temperature Titanium Alloys: A Review. Metals 2023, 13, 1975. [Google Scholar] [CrossRef]
- Shen, F.; Zhang, Y.; Yu, L.; Fu, T.; Wang, J.; Wang, H.; Cui, K. Microstructure and Oxidation Behavior of Nb-Si-Based Alloys for Ultrahigh Temperature Applications: A Comprehensive Review. Coatings 2021, 11, 1373. [Google Scholar] [CrossRef]
- Cornish, L.A.; Chown, L.H. Platinum-based alloys and coatings: Materials for the future? Adv. Gas Turbine Technol. 2011, 337–370. [Google Scholar]
- Pollock, T.M.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Batalha, W.C.; Roche, V.; Champion, Y.; Mantel, M.; Verdier, M.; Martin, V.; Kiminami, C.S.; Junior, A.M.J. Newly-developed pseudo-high entropy amorphous alloys: Structure/microstructure evolution, mechanical and corrosion properties. J. Non-Cryst. Solids 2023, 613, 122369. [Google Scholar] [CrossRef]
- Galiullin, T.; Pillai, R.; Quadakkers, W.J.; Naumenko, D. Differences in Oxidation Behavior of Conventionally Cast and Additively Manufactured Co-Base Alloy MAR-M-509. High Temp. Corros. Mater. 2023, 100, 791–816. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Chung, D.; Kwon, H.; Eze, C.; Kim, W.; Na, Y. Influence of Ti addition on the strengthening and toughening effect in CoCrFeNiTix multi principal element alloys. Metals 2021, 11, 1511. [Google Scholar] [CrossRef]
- Ben, Q.; Zhang, Y.; Sun, L.; Wang, L.; Wang, Y.; Zhan, X. Wear and corrosion resistance of FeCoCrxNiAl high-entropy alloy coatings fabricated by laser cladding on Q345 welded joint. Metals 2022, 12, 1428. [Google Scholar] [CrossRef]
- Fang, L.; Wang, J.; Li, X.; Tao, X.; Ouyang, Y.; Du, Y. Effect of Cr content on microstructure characteristics and mechanical properties of ZrNbTaHf0.2Crx refractory high entropy alloy. J. Alloys Compd. 2022, 924, 166593. [Google Scholar] [CrossRef]
- Fang, L.; Xu, C.; Tan, Y.; Tao, X.; Xu, G.; Ouyang, Y.; Du, Y. Composition control and heat treatment effect on characteristics of ZrNbTaHfx refractory high entropy alloys. Int. J. Refract. Met. Hard Mater. 2024, 120, 106597. [Google Scholar] [CrossRef]
- Liu, F.; Liaw, P.K.; Zhang, Y. Recent progress with BCC-structured high-entropy alloys. Metals 2022, 12, 501. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.-P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Mazilkin, A.; Ferdowsi, M.R.G.; Boltynjuk, E.; Kulagin, R.; Lapovok, R. High-Pressure Torsion: A Path to Refractory High-Entropy Alloys from Elemental Powders. Metals 2024, 14, 672. [Google Scholar] [CrossRef]
- Cheng, B.; Kong, L.; Cai, H.; Li, Y.; Zhao, Y.; Wan, D.; Xue, Y. Pushing the Boundaries of solid-state hydrogen storage: A Refined study on TiVNbCrMo high-entropy alloys. Int. J. Hydrogen Energy 2024, 60, 282–292. [Google Scholar] [CrossRef]
- Shi, W.; Chen, L.; Liang, L.; Gu, B.; Yang, T.; Cao, A.; Li, D.; Zhao, J.; Liu, H. First-principles calculation of phase stability and elastic properties of CrxMoNbTiV refractory high-entropy alloys. AIP Adv. 2023, 13, 095222. [Google Scholar] [CrossRef]
- Xiang, C.; Fu, H.M.; Zhang, Z.M.; Han, E.-H.; Zhang, H.F.; Wang, J.Q.; Hu, G.D. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. J. Alloys Compd. 2020, 818, 153352. [Google Scholar] [CrossRef]
- Beniwal, D.; Ray, P.K. Learning phase selection and assemblages in High-Entropy Alloys through a stochastic ensemble-averaging model. Comput. Mater. Sci. 2021, 197, 110647. [Google Scholar] [CrossRef]
- Stein, F.; Leineweber, A. Laves phases: A review of their functional and structural applications and an improved fundamental understanding of stability and properties. J. Mater. Sci. 2021, 56, 5321–5427. [Google Scholar]
- Yadav, T.P.; Mukhopadhyay, S.; Mishra, S.S.; Mukhopadhyay, N.K.; Srivastava, O.N. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy. Philos. Mag. Lett. 2017, 97, 494–503. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 2001, 36, 2183–2198. [Google Scholar] [CrossRef]
- Senkov, O.N.; Woodward, C.F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 2011, 529, 311–320. [Google Scholar] [CrossRef]
- Nagase, T.; Mizuuchi, K.; Nakano, T. Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium-entropy alloy and TiNbTaZrX (X = V, Mo, W) high-entropy alloys. Entropy 2019, 21, 483. [Google Scholar] [CrossRef]
- Moussa, M.; Gorsse, S.; Huot, J.; Bobet, J.L. Effect of the synthesis route on the microstructure of HfxTi(1−x) NbVZr refractory high-entropy alloys. Metals 2023, 13, 343. [Google Scholar] [CrossRef]
- Sabeena, M.; Murugesan, S.; Anees, P.; Mohandas, E.; Vijayalakshmi, M. Crystal structure and bonding characteristics of transformation products of bcc β in Ti-Mo alloys. J. Alloys Compd. 2017, 705, 769–781. [Google Scholar] [CrossRef]
- Romero, N.P.; Witman, M.; Harvey, K.; Stavila, V.; Nassif, V.; Elkaïm, E.; Zlotea, C. Large destabilization of (TiVNb)-based hydrides via (Al, Mo) addition: Insights from experiments and data-driven models. ACS Appl. Energy Mater. 2023, 6, 12560–12572. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Z.; Li, C.; Wang, Z. Effect of Cr on Microstructure and Properties of WVTaTiCrx Refractory High-Entropy Alloy Laser Cladding. Materials 2023, 16, 3060. [Google Scholar] [CrossRef]
- Hazarika, M.P.; Tripathi, A.; Chakraborty, S.N. Study of phase transition and local order in equiatomic and nonequiatomic mixtures of HfNbTaTi under uniaxial loading from molecular dynamics simulations. J. Appl. Phys. 2024, 135, 144901. [Google Scholar] [CrossRef]
- Wang, B.; Yao, Y.; Yu, X.; Wang, C.; Wu, C.; Zou, Z. Understanding the enhanced catalytic activity of high entropy alloys: From theory to experiment. J. Mater. Chem. A 2021, 9, 19410–19438. [Google Scholar] [CrossRef]
- Yang, K.; Xie, H.; Sun, C.; Zhao, X.; Li, F. Influence of Vanadium on the microstructure of IN718 alloy by laser cladding. Materials 2019, 12, 3839. [Google Scholar] [CrossRef]
- Wen, J.; Chu, X.; Cao, Y.; Li, N. Effects of Al on precipitation behavior of Ti-Nb-Ta-Zr refractory high entropy alloys. Metals 2021, 11, 514. [Google Scholar] [CrossRef]
- Tussupzhanov, A.; Yerbolatuly, D.; Kveglis, L.I.; Filarowski, A. Investigation of structural-phase states and features of plastic deformation of the austenitic precipitation-hardening Co-Ni-Nb alloy. Metals 2017, 8, 19. [Google Scholar] [CrossRef]
- Ji, X.; Xie, H.; Su, J.; Jiang, F.; Teng, J.; Zhang, H.; Guo, B. Phase transformation behaviors and dislocation evolutions of an additively manufactured Ti-6Al-4V alloy under annealing treatment. Metals 2023, 13, 1061. [Google Scholar] [CrossRef]
- Romanov, K.; Shveykin, A.; Trusov, P. Advanced statistical crystal plasticity model: Description of copper grain structure refinement during equal channel angular pressing. Metals 2023, 13, 953. [Google Scholar] [CrossRef]
- Kierat, M.; Moskal, G.; Zieliński, A.; Jung, T. Influence of alloying elements on the microstructure and selected high-temperature properties of new cobalt-based L12-reinforced superalloys. Arch. Metall. Mater. 2022, 67, 495–500. [Google Scholar] [CrossRef]
- Xiang, C.; Han, E.-H.; Zhang, Z.M.; Fu, H.M.; Wang, J.Q.; Zhang, H.F.; Hu, G.D. Design of single-phase high-entropy alloys composed of low thermal neutron absorption cross-section elements for nuclear power plant application. Intermetallics 2019, 104, 143–153. [Google Scholar] [CrossRef]
- Ujah, C.O.; Kallon, D.V.V.; Aigbodion, V.S. Analyzing the Tribology of High-Entropy Alloys Prepared by Spark Plasma Sintering. Metals 2023, 14, 27. [Google Scholar] [CrossRef]
- Qiu, H.; Tao, S.; Jiang, W.; Yan, X.; Wu, S.; Guo, S.; Zhu, B.; Wang, D. Hot Rolling on Microstructure and Properties of NbHfTiVC0.1 Refractory High-Entropy Alloy. Metals 2023, 13, 1909. [Google Scholar] [CrossRef]
- Armstrong, R.W. 60 years of Hall-Petch: Past to present nano-scale connections. Mater. Trans. 2014, 55, 2–12. [Google Scholar] [CrossRef]
- Xu, H.; Ji, W.; Jiang, J.; Liu, J.; Wang, H.; Zhang, F.; Yu, R.; Tu, B.; Zhang, J.; Zou, J.; et al. Contribution of boundary non-stoichiometry to the lower-temperature plasticity in high-pressure sintered boron carbide. Nat. Commun. 2023, 14, 4889. [Google Scholar] [CrossRef]
- Xu, M.; Li, H.; Liu, Q.; Shan, F.; Zhang, Y.; Guo, W.; Li, F.; Zhang, H. In situ tensile observation of the effect of annealing on fracture behavior of laser additive manufactured titanium alloy. Materials 2023, 16, 3973. [Google Scholar] [CrossRef]
- Wang, Z.; Ju, J.; Wang, J.; Yin, W.; Chen, R.; Li, M.; Jin, C.; Tang, X.; Lee, D.; Yan, A. Magnetic properties improvement of die-upset Nd-Fe-B magnets by Dy-Cu press injection and subsequent heat treatment. Sci. Rep. 2016, 6, 38335. [Google Scholar] [CrossRef]
- Waseem, O.A.; Ryu, H.J. Combinatorial development of the low-density high-entropy alloy Al10Cr20Mo20Nb20Ti20Zr10 having gigapascal strength at 1000 °C. J. Alloys Compd. 2020, 845, 155700. [Google Scholar] [CrossRef]
- Feng, R.; Feng, B.; Gao, M.C.; Zhang, C.; Neuefeind, J.C.; Poplawsky, J.D.; Ren, Y.; An, K.; Widom, M.; Liaw, P.K. Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv. Mater. 2021, 33, 2102401. [Google Scholar] [CrossRef]
- Panina, E.S.; Yurchenko, N.Y.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Mishunin, M.V.; Stepanov, N.D. Structures and mechanical properties of Ti-Nb-Cr-V-Ni-Al refractory high entropy alloys. Mater. Sci. Eng. A 2020, 786, 139409. [Google Scholar] [CrossRef]
As-Cast Composition Code | Composition (at.%) |
---|---|
AC-R1 | 10V-35Ti-5Cr-35Nb-15Mo |
AC-R2 | 15V-30Ti-5Cr-35Nb-15Mo |
AC-R3 | 15V-35Ti-5Cr-30Nb-15Mo |
AC-R4 | 5V-35Ti-5Cr-40Nb-15Mo |
AC-R5 | 5V-40Ti-5Cr-35Nb-15Mo |
Annealed Composition Code | Composition (at.%) |
ANN-R1 | 10V-35Ti-5Cr-35Nb-15Mo |
ANN-R2 | 15V-30Ti-5Cr-35Nb-15Mo |
ANN-R3 | 15V-35Ti-5Cr-30Nb-15Mo |
ANN-R4 | 5V-35Ti-5Cr-40Nb-15Mo |
ANN-R5 | 5V-40Ti-5Cr-35Nb-15Mo |
Element | V | Ti | Cr | Nb | Mo |
---|---|---|---|---|---|
ρ, g/cm3 | 6.11 | 4.51 | 7.14 | 8.57 | 10.28 |
r, Å | 1.32 | 1.46 | 1.25 | 1.43 | 1.36 |
Tm, (°C) | 1910 | 1668 | 1907 | 2477 | 2623 |
Alloy | σ0.2 (MPa) | σb (MPa) | ε (%) | Hardness (HV1) | ρ (g/cm3) |
---|---|---|---|---|---|
AC-R1 | 1141 | 1622 | 19.9 | 401.7 ± 2.57 | 6.96 ± 0.07 |
AC-R2 | 1145 | 1775 | 18.2 | 414.7 ± 4.21 | 7.31 ± 0.26 |
AC-R3 | 1222 | 1759 | 17.5 | 407.6 ± 4.68 | 6.95 ± 0.11 |
AC-R4 | 1166 | 1701 | 19.2 | 391.0 ± 6.01 | 7.08 ± 0.21 |
AC-R5 | 1059 | 1388 | 20.2 | 387.0 ± 7.04 | 6.89 ± 0.12 |
ANN-R1 | 1088 | 1567 | 23.8 | 370.7 ± 3.21 | 6.99 ± 0.01 |
ANN-R2 | 1098 | 1665 | 23.7 | 404.1 ± 7.73 | 7.15 ± 0.04 |
ANN-R3 | 1114 | 1720 | 25.3 | 399.9 ± 6.47 | 6.81 ± 0.02 |
ANN-R4 | 1033 | 1530 | 26.9 | 363.8 ± 2.51 | 7.13 ± 0.06 |
ANN-R5 | 1022 | 1344 | 20.7 | 367.9 ± 7.82 | 7.17 ± 0.05 |
Alloy | Phase Composition | State | σb (MPa) | ε (%) | References |
---|---|---|---|---|---|
AC-R2 | BCC + HCP + Laves | As-cast | 1775 | 18.2 | This work |
AC-R3 | BCC + HCP + Laves | As-cast | 1759 | 17.5 | This work |
AC-R4 | BCC + HCP + Laves | As-cast | 1701 | 19.2 | This work |
AC-R1 | BCC + HCP + Laves | As-cast | 1622 | 19.9 | This work |
AC-R5 | BCC + HCP | As-cast | 1388 | 20.2 | This work |
VTiCrNbMo | BCC | As-cast | 1677 | 9.4 | [39] |
ANN-R2 | BCC + HCP + Laves | AT-1200 °C | 1665 | 23.7 | This work |
ANN-R3 | BCC + HCP + Laves | AT-1200 °C | 1720 | 25.3 | This work |
ANN-R1 | BCC + HCP + Laves | AT-1200 °C | 1567 | 23.8 | This work |
ANN-R4 | BCC + HCP | AT-1200 °C | 1530 | 26.9 | This work |
VTiCr0.75NbMo0.5 | BCC | AT-1200 °C | 1543 | 5.3 | [20] |
VTiCr0.5NbMo0.5 | BCC | AT-1200 °C | 1586 | 6.7 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zhu, J.; Tan, Z.; Chen, R.; Chen, Y.; Tao, X. Multi-Phase Design Strategy for Synergistic Strength–Ductility Optimization in V-Ti-Cr-Nb-Mo Refractory High-Entropy Alloys. Materials 2025, 18, 2479. https://doi.org/10.3390/ma18112479
Liang X, Zhu J, Tan Z, Chen R, Chen Y, Tao X. Multi-Phase Design Strategy for Synergistic Strength–Ductility Optimization in V-Ti-Cr-Nb-Mo Refractory High-Entropy Alloys. Materials. 2025; 18(11):2479. https://doi.org/10.3390/ma18112479
Chicago/Turabian StyleLiang, Xinwen, Jiahao Zhu, Zhenjiao Tan, Ruikang Chen, Yun Chen, and Xiaoma Tao. 2025. "Multi-Phase Design Strategy for Synergistic Strength–Ductility Optimization in V-Ti-Cr-Nb-Mo Refractory High-Entropy Alloys" Materials 18, no. 11: 2479. https://doi.org/10.3390/ma18112479
APA StyleLiang, X., Zhu, J., Tan, Z., Chen, R., Chen, Y., & Tao, X. (2025). Multi-Phase Design Strategy for Synergistic Strength–Ductility Optimization in V-Ti-Cr-Nb-Mo Refractory High-Entropy Alloys. Materials, 18(11), 2479. https://doi.org/10.3390/ma18112479