Analysis of Precipitation Control Process and Mechanical Properties of Ti-2Al-9.2Mo-2Fe Alloy
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructures According to Solution Treatment
3.2. Changes in Precipitation Phases Due to Aging Treatment
3.3. Hardness Properties
3.4. Room-Temperature Compression Properties
4. Conclusions
- (1)
- The Ti-2Al-9.2Mo-2Fe alloy was solution-treated at 790 °C, which was below the β-transformation temperature, for 1 h and then rapidly cooled to form an equiaxed β-phase matrix and a fine primary α phase. The athermal ω phase was not precipitated.
- (2)
- Aging treatment at temperatures of 450 and 500 °C resulted in precipitation of the isothermal ω phase, which decreased with increasing aging time. This showed that the ω/β phase boundary acted as a nucleation site between the aging temperature of 450 and 500 °C, causing a phase transformation from the ω phase to the α phase. In addition, for aging temperatures higher than 550 °C, the phase transformation was accelerated by the high precipitation driving force, so that the ω phase transformed into the secondary α phase within an aging time of 1 h, forming morphologies such as the WGB α phase and basket-weave α phase.
- (3)
- It was confirmed that the precipitation and growth of the secondary α phase coarsened with the increase in aging temperature and aging time. The influence of aging temperature was more dominant, as evidenced by the comparison of the XRD and microstructure data, which exhibited a large difference of approximately 19.4% between the changes in the α-phase fraction according to the aging temperature (41.6%) and aging time (22.2%).
- (4)
- The ω phase formed at aging temperatures of 450–500 °C improved the hardness and compressive strength, but lowered the ductility, causing brittle fracture. However, the secondary α phase decreased the hardness and compressive strength and increased the ductility, depending on the amount of precipitation and growth. In addition, when comparing the microstructures and compression test data of the 550 °C/6 h and 600 °C/6 h conditions, it was confirmed that the growth of the secondary α phase was more dominant in the mechanical properties.
- (5)
- The Ti-2Al-9.2Mo-2Fe alloy, which is an LCB alloy, was able to exhibit excellent mechanical properties through the control of the precipitation phase by controlling the aging treatment. It was confirmed that the appropriate phase transformation from the ω phase to the secondary α phase occurred under the aging conditions of 500 °C/6 h and 500 °C/12 h, showing the best mechanical properties. This was thus deemed the optimal heat-treatment condition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, Y.; Destek, M.A.; Pata, U.K.; Khan, Z. Environmental Regulations and Carbon Emissions: The Role of Renewable Energy Research and Development Expenditures. Sustainability 2023, 15, 13345. [Google Scholar] [CrossRef]
- Pawłowski, A.; Rydzewski, P. Pathways to Carbon Neutrality: Integrating Energy Strategies, Policy, and Public Perception in the Face of Climate Change—A Global Perspective. Energies 2024, 17, 5867. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Iqbal Cheema, I. Low-carbon technologies in automotive industry and decarbonizing transport. J. Power Sources 2024, 591, 233888. [Google Scholar] [CrossRef]
- Palea, V.; Santhià, C. The financial impact of carbon risk and mitigation strategies: Insights from the automotive industry. J. Clean. Prod. 2022, 344, 131001. [Google Scholar] [CrossRef]
- Yang, W.; Park, J.; Choi, K.; Chung, C.H.; Lee, J.; Zhu, J.; Zhang, F.; Park, J.S. Evaluation of growth kinetics of aluminide coating layers on Ti-6Al-4V alloys by pack cementation and the oxidation behaviours of the coated Ti-6Al-4V alloys. Int. J. Refract. Met. Hard Mater. 2021, 101, 105642. [Google Scholar] [CrossRef]
- Lee, S.-W.; Kim, H.-M.; Lee, Y.-J.; Lee, J.-G.; Lee, D.-G. Effect of Aging Treatment on the Microstructure and Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy. Appl. Sci. 2024, 14, 6192. [Google Scholar] [CrossRef]
- Villechaise, P.; Takahashi, K.; Mori, K.; Takebe, H.; Appolaire, B.; Castany, P.; Dehmas, M.; Delaunay, C.; Delfosse, J.; Denquin, A.; et al. Application of Titanium and its Alloys for Automobile Parts. MATEC Web Conf. 2020, 321, 02003. [Google Scholar] [CrossRef]
- Li, L.; Xu, Q.; Yang, H.; Ying, Y.; Cao, Z.; Guo, D.; Ji, V. Design and Rate Control of Large Titanium Alloy Springs for Aerospace Applications. Aerospace 2024, 11, 514. [Google Scholar] [CrossRef]
- Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef]
- Niknam, S.A.; Khettabi, R.; Songmene, V. Machinability and Machining of Titanium Alloys: A Review. In Machining of Titanium Alloys; Materials Forming, Machining and Tribology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–30. [Google Scholar]
- Yumak, N.; Aslantaş, K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters. J. Mater. Res. Technol. 2020, 9, 15360–15380. [Google Scholar] [CrossRef]
- Bai, B.; Yang, J.; Hong, Q. Progress on Titanium Spring. In Ti-2007: Science and Technology; Japan Institute of Metals: Sendai, Japan, 2007; pp. 1411–1414. [Google Scholar]
- Boyer, R.; Rosenberg, H. Beta Titanium Alloys in the 80’s; TMS-AIME Publications: Warrendale, PA, USA, 1984; p. 1. [Google Scholar]
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Abd-elrhman, Y.; Gepreel, M.A.H.; Abdel-Moniem, A.; Kobayashi, S. Compatibility assessment of new V-free low-cost Ti–4.7Mo–4.5Fe alloy for some biomedical applications. Mater. Des. 2016, 97, 445–453. [Google Scholar] [CrossRef]
- Bodunrin, M.O.; Chown, L.H.; Omotoyinbo, J.A. Development of low-cost titanium alloys: A chronicle of challenges and opportunities. Mater. Today Proc. 2021, 38, 564–569. [Google Scholar] [CrossRef]
- Šmilauerová, J.; Pospíšil, J.; Harcuba, P.; Holý, V.; Janeček, M. Single crystal growth of TIMETAL LCB titanium alloy by a floating zone method. J. Cryst. Growth 2014, 405, 92–96. [Google Scholar] [CrossRef]
- Abdelrhman, Y.; Gepreel, M.A.; Kobayashi, S.; Okano, S.; Okamoto, T. Biocompatibility of new low-cost (alpha + beta)-type Ti-Mo-Fe alloys for long-term implantation. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Senopati, G.; Rahman Rashid, R.A.; Kartika, I.; Palanisamy, S. Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals 2023, 13, 194. [Google Scholar] [CrossRef]
- Šmilauerová, J.; Janeček, M.; Harcuba, P.; Stráský, J.; Veselý, J.; Kužel, R.; Rack, H.J. Ageing response of sub-transus heat treated Ti–6.8Mo–4.5Fe–1.5Al alloy. J. Alloys Compd. 2017, 724, 373–380. [Google Scholar] [CrossRef]
- Markovsky, P.; Ivasishin, O.M.; Semiatin, S.L.; Ward, C.H. Influence of grain size, aging conditions and tension rate on the mechanical behavior of a β-Ti alloy. Mater. Sci. Eng. A 2015, 639, 567–577. [Google Scholar] [CrossRef]
- Li, C.L.; Ye, W.J.; Mi, X.J.; Hui, S.X.; Lee, D.G.; Lee, Y.T. Development of Low Cost and Low Elastic Modulus of Ti-Al-Mo-Fe Alloys for Automotive Applications. Key Eng. Mater. 2013, 551, 114–117. [Google Scholar] [CrossRef]
- Li, C.-L.; Mi, X.-J.; Ye, W.-J.; Hui, S.-X.; Lee, D.-G.; Lee, Y.-T. Microstructural evolution and age hardening behavior of a new metastable beta Ti–2Al–9.2Mo–2Fe alloy. Mater. Sci. Eng. A 2015, 645, 225–231. [Google Scholar] [CrossRef]
- Xiao, J.F.; Nie, Z.H.; Tan, C.W.; Zhou, G.; Chen, R.; Li, M.R.; Yu, X.D.; Zhao, X.C.; Hui, S.X.; Ye, W.J.; et al. The dynamic response of the metastable β titanium alloy Ti-2Al-9.2Mo-2Fe at ambient temperature. Mater. Sci. Eng. A 2019, 751, 191–200. [Google Scholar] [CrossRef]
- Li, C.; Lee, D.-G.; Mi, X.; Ye, W.; Hui, S.; Lee, Y. Effect of Al Addition on ω Precipitation and Age Hardening of Ti-Al-Mo-Fe Alloys. Metall. Mater. Trans. A 2016, 47, 2454–2461. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, S.; Tan, Y.B.; Ji, X.M. Study on ω-assisted α nucleation behavior of metastable β-Ti alloys from phase transformation mechanism. J. Alloys Compd. 2022, 890, 161686. [Google Scholar] [CrossRef]
- Li, T.; Kent, D.; Sha, G.; Dargusch, M.S.; Cairney, J.M. The mechanism of ω-assisted α phase formation in near β-Ti alloys. Scr. Mater. 2015, 104, 75–78. [Google Scholar] [CrossRef]
- Youn, C.-S.; Park, Y.-K.; Kim, J.-H.; Lee, S.-C.; Lee, D.-G. Aging Treatment Optimization of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy for Spring Application. J. Korean Soc. Heat Treatment. 2017, 30, 279–284. [Google Scholar]
- Kim, H.-M.; Park, S.-Y.; Lee, D.-G. Microstructural Evolution and Mechanical Properties According to Aging Conditions of Ti-5Mo-2Fe Alloy. Korean J. Met. Mater. 2023, 61, 545–552. [Google Scholar] [CrossRef]
- Yolton, C.; Froes, F.; Malone, R. Alloying element effects in metastable beta titanium alloys. Metall. Trans. A 1979, 10, 132–134. [Google Scholar] [CrossRef]
- ASTM E9-09; Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Korea Institute of Materials Science (KIMS). Microstructure Evolution in Boron Modified Beta Titanium Alloy. In Final Report of National R&D Program; Project No. 1711029951; Ministry of Science, ICT and Future Planning: Changwon, Republic of Korea, 2016. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, S.; Yang, S.; Ke, Y.; Zhang, X.; Zhou, K. Precipitation Behavior of ω Phase and ω → α Transformation in Near β Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Process. Metals 2021, 11, 273. [Google Scholar] [CrossRef]
- Ballor, J.; Li, T.; Prima, F.; Boehlert, C.J.; Devaraj, A. A review of the metastable omega phase in beta titanium alloys: The phase transformation mechanisms and its effect on mechanical properties. Int. Mater. Rev. 2022, 68, 26–45. [Google Scholar] [CrossRef]
- Li, C.-L. Investigation on Microstructural Evolution and Mechanical Property Relationship of a New Beta Ti-2Al-9.2 Mo-2Fe Alloy. Ph.D. Thesis, General Research Institute for Nonferrous Metals, Beijing, China, 2013. [Google Scholar]
- Duerig, T.; Terlinde, G.; Williams, J. Phase transformations and tensile properties of Ti-10V-2Fe-3AI. Metall. Trans. A 1980, 11, 1987–1998. [Google Scholar] [CrossRef]
- Hua, K.; Li, J.; Kou, H.; Fan, J.; Sun, M.; Tang, B. Phase precipitation behavior during isothermal deformation in β-quenched near beta titanium alloy Ti-7333. J. Alloys Compd. 2016, 671, 381–388. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Tseng, Y.-J.; Wu, C.-T.; Chao, Y.-C.; Bhattacharjee, P.; Chang, H.-T.; Yen, H.-W. Embrittlement of metastable β-Ti alloy induced by isothermal ω precipitates. Materialia 2023, 27, 101677. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Zhou, G.; Zhang, S.; Chen, L. Dependence of strength and ductility on secondary α phase in a novel metastable-β titanium alloy. J. Mater. Res. Technol. 2022, 18, 5257–5266. [Google Scholar] [CrossRef]
- Wang, S.; Ran, X.; He, B. Formation mechanism of ultrafine α lamellae with high-density dislocations in Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy fabricated by laser powder bed fusion. Mater. Lett. 2023, 351, 135022. [Google Scholar] [CrossRef]
- Xiang, W.; Yuan, W.; Deng, H.; Luo, H.; Chen, L.; Yin, W. Effect of Aging Temperature on the Microstructure and Mechanical Properties of a Novel beta Titanium Alloy. Materials 2023, 16, 7393. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.; Gan, X.; Wang, X.; Ge, J.; Li, C.; Zhu, Z.; Zhang, X.; Zhou, K. Effect of Cooling Rate on alpha Variant Selection and Microstructure Evolution in TB17 Titanium Alloy. Materials 2024, 17, 5010. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, J.; Kou, H.; Hua, K.; Tang, B.; Zhang, Y. Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333. J. Alloys Compd. 2016, 682, 517–524. [Google Scholar] [CrossRef]
- Du, Z.; Xiao, S.; Xu, L.; Tian, J.; Kong, F.; Chen, Y. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy. Mater. Des. 2014, 55, 183–190. [Google Scholar] [CrossRef]
- Lu, H.; Wang, S.; Mi, C.; Zhang, H.; Guo, Y.; Zhang, S.; Zhang, X. The space of secondary α phase significantly affects the mechanical properties of metastable β-type Ti-4V-2Mo-2Fe alloy. Mater. Lett. 2024, 373, 137148. [Google Scholar] [CrossRef]
- Xu, P.; Liu, H.; Zhou, L.; Tang, J. Microstructural evolution and mechanical properties of Ti55531–0.5Nb fabricated by selective laser melting under different heat treatments. Mater. Charact. 2024, 208, 113683. [Google Scholar] [CrossRef]
- du Preez, W.; Raganya, L.; Moshokoa, N.; Machaka, R.; Obadele, B.; Makhatha, M. Microstructure and tensile properties of heat-treated Ti-Mo alloys. MATEC Web Conf. 2022, 370, 03007. [Google Scholar] [CrossRef]
Elements | Al | Mo | Fe | Cu | Si | C | H | O | N | Ti |
---|---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 2.33 | 9.33 | 1.98 | 0.015 | 0.037 | 0.0091 | 0.0013 | 0.054 | 0.0087 | Bal. |
α Phase Fraction (%) | β Phase Fraction (%) | ω Phase Fraction (%) | |
---|---|---|---|
450 °C/1 h | 0.6 | 89.0 | 10.4 |
450 °C/6 h | 0.8 | 87.9 | 11.3 |
450 °C/12 h | 1.2 | 94.8 | 4.0 |
450 °C/18 h | 1.2 | 96.1 | 2.7 |
500 °C/1 h | 0.8 | 91.5 | 7.7 |
500 °C/6 h | 20.3 | 76.1 | 3.6 |
500 °C/12 h | 24.4 | 72.4 | 3.2 |
500 °C/18 h | 31.8 | 67.6 | 0.6 |
550 °C/6 h | 55.3 | 44.7 | - |
600 °C/6 h | 45.6 | 54.4 | - |
Compressive Yield Strength (MPa) | Ultimate Compressive Strength (MPa) | Compressive Fracture Strain (%) | |
---|---|---|---|
450 °C/1 h | 1615.3 ± 13.0 | 1825.5 ± 18.1 | 16.9 ± 2.1 |
450 °C/6 h | 1690.0 ± 3.6 | 1874.7 ± 6.3 | 14.1 ± 0.7 |
450 °C/12 h | 1583.8 ± 12.2 | 1777.2 ± 15.1 | 17.51 ± 0.8 |
450 °C/18 h | 1571.2 ± 12.3 | 1723.0 ± 5.9 | 20.5 ± 1.4 |
500 °C/1 h | 1458.7 ± 13.2 | 1786.7 ± 21.2 | 33.1 ± 1.8 |
500 °C/6 h | 1375.9 ± 1.8 | 1680.7 ± 2.8 | 29.9 ± 0.1 |
500 °C/12 h | 1314.7 ± 10.1 | 1633.1 ± 13.0 | 29.2 ± 0.0 |
500 °C/18 h | 1242.6 ± 7.9 | 1710.7 ± 9.2 | 30.8 ± 0.2 |
550 °C/6 h | 944.2 ± 17.6 | 1604.7 ± 24.4 | 40.3 ± 3.4 |
600 °C/6 h | 746.8 ± 3.3 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.-H.; Lee, D.-G. Analysis of Precipitation Control Process and Mechanical Properties of Ti-2Al-9.2Mo-2Fe Alloy. Materials 2025, 18, 2448. https://doi.org/10.3390/ma18112448
Shin S-H, Lee D-G. Analysis of Precipitation Control Process and Mechanical Properties of Ti-2Al-9.2Mo-2Fe Alloy. Materials. 2025; 18(11):2448. https://doi.org/10.3390/ma18112448
Chicago/Turabian StyleShin, Su-Hong, and Dong-Geun Lee. 2025. "Analysis of Precipitation Control Process and Mechanical Properties of Ti-2Al-9.2Mo-2Fe Alloy" Materials 18, no. 11: 2448. https://doi.org/10.3390/ma18112448
APA StyleShin, S.-H., & Lee, D.-G. (2025). Analysis of Precipitation Control Process and Mechanical Properties of Ti-2Al-9.2Mo-2Fe Alloy. Materials, 18(11), 2448. https://doi.org/10.3390/ma18112448