Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, Y.; Siwatch, P.; Karwasra, R.; Sharma, K.; Tripathi, S.K. Recent progress of layered structured P2- and O3- type transition metal oxides as cathode material for sodium-ion batteries. Renew. Sustain. Energy Rev. 2024, 192, 114167. [Google Scholar] [CrossRef]
- Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600275. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, R.; Kumari, V.; Chakrabarty, S.; Omar, S. Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 2023, 137, 101128. [Google Scholar] [CrossRef]
- Peng, B.; Zhou, Z.; Shi, J.; Huang, X.; Li, Y.; Ma, L. Earth-Abundant Fe-Mn-Based Compound Cathodes for Sodium-Ion Batteries: Challenges and Progress. Adv. Funct. Mater. 2024, 34, 2311816. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Meng, F.; Zhang, K.; Qi, Y.; Zeng, Y.; Cai, C.; Xiong, Y.; Jian, Z.; Sun, Y.; et al. Boosting Li-ion storage in Li2MnO3 by unequal-valent Ti4+-substitution and interlayer Li vacancies building. Chin. Chem. Lett. 2023, 34, 107494. [Google Scholar] [CrossRef]
- Zhang, C.; Chou, S.; Guo, Z.; Dou, S.-X. Beyond Lithium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2308001. [Google Scholar] [CrossRef]
- Wei, Q.; Huang, T.; Huang, X.; Wang, B.; Jiang, Y.; Tang, D.; Peng, D.-L.; Dunn, B.; Mai, L. High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2023, 2, 434–442. [Google Scholar] [CrossRef]
- Wu, C.; Xu, Y.; Song, J.; Hou, Y.; Jiang, S.; He, R.; Wei, A.; Tan, Q. Research progress on P2-type layered oxide cathode materials for sodium-ion batteries. Chem. Eng. J. 2024, 500, 157264. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, J.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Phosphate Framework Electrode Materials for Sodium Ion Batteries. Adv. Sci. 2017, 4, 1600392. [Google Scholar] [CrossRef]
- Hao, Z.; Shi, X.; Yang, Z.; Zhou, X.; Li, L.; Ma, C.-Q.; Chou, S. The Distance Between Phosphate-Based Polyanionic Compounds and Their Practical Application For Sodium-Ion Batteries. Adv. Mater. 2024, 36, 2305135. [Google Scholar] [CrossRef]
- Wang, N.; Ma, J.; Liu, Z.; Xu, J.; Zhao, D.; Wang, N.; Yang, C.; Cao, Y.; Lu, J.; Zhang, J. An air-stable iron/manganese-based phosphate cathode for high performance sodium-ion batteries. Chem. Eng. J. 2022, 433, 133798. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, Y.; Zhou, Q.; Zhang, H.; Wang, Z.; Liu, L.; Zhao, K.; Wu, F.; Gao, H. The importance of bond covalency for the activation of multielectron reactions in phosphate cathodes for sodium-ion batteries. Energy Storage Mater. 2024, 72, 103770. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, L.; Gao, T.; Chen, Z.; Hou, X.; Zhang, J.; Bai, Y.; Yang, L.; Liu, H.; Yang, C.; et al. Development of High-Performance Iron-Based Phosphate Cathodes toward Practical Na-Ion Batteries. J. Am. Chem. Soc. 2024, 146, 9819–9827. [Google Scholar] [CrossRef]
- Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Guo, X.; Wang, E.; Gu, Q.; Hu, Z.; Indris, S.; Wang, X.-L.; et al. Development and Investigation of a NASICON-Type High-Voltage Cathode Material for High-Power Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 2449–2456. [Google Scholar] [CrossRef]
- Guo, J.-Z.; Zhang, H.-X.; Gu, Z.-Y.; Du, M.; Lü, H.-Y.; Zhao, X.-X.; Yang, J.-L.; Li, W.-H.; Kang, S.; Zou, W.; et al. Heterogeneous NASICON-Type Composite as Low-Cost, High-Performance Cathode for Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2209482. [Google Scholar] [CrossRef]
- Huang, Q.; Hu, Z.; Chen, K.; Zeng, Z.; Sun, Y.; Kong, Q.; Feng, W.; Wang, K.; Li, Z.; Wu, Z.; et al. Partial Modification Strategies of NASICON-Type Na3V2(PO4)3 Materials for Cathodes of Sodium-Ion Batteries: Progress and Perspectives. ACS Appl. Energy Mater. 2023, 6, 2657–2679. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; You, Y.; Vinu, A.; Mai, L. NASICONs-type solid-state electrolytes: The history, physicochemical properties, and challenges. Interdiscip. Mater. 2023, 2, 91–110. [Google Scholar] [CrossRef]
- He, F.; Kang, J.; Liu, T.; Deng, H.; Zhong, B.; Sun, Y.; Wu, Z.; Guo, X. Research Progress on Electrochemical Properties of Na3V2(PO4)3 as Cathode Material for Sodium-Ion Batteries. Ind. Eng. Chem. Res. 2023, 62, 3444–3464. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, X.; Yan, L.; Kang, Q.; Du, H.; Wan, C.; Fan, M.; Ma, T. Vanadium-free NASICON-type electrode materials for sodium-ion batteries. J. Mater. Chem. A 2022, 10, 21816–21837. [Google Scholar] [CrossRef]
- Shao, Y.; Qian, Y.; Zhang, T.; Zhang, P.; Wang, H.; Qian, T.; Yan, C. Doping modification of sodium superionic conductor Na3V2(PO4)3 cathodes for sodium-ion batteries: A mini-review. Inorg. Chem. Front. 2024, 11, 4552–4567. [Google Scholar] [CrossRef]
- Gao, H.; Li, Y.; Park, K.; Goodenough, J.B. Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples. Chem. Mater. 2016, 28, 6553–6559. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Li, R.; Li, X.; Gao, J.; Hao, S.-M.; Zhou, W. Study on sodium storage properties of manganese-doped sodium vanadium phosphate cathode materials. Battery Energy 2023, 2, 20220042. [Google Scholar] [CrossRef]
- Wang, D.; Bie, X.; Fu, Q.; Dixon, D.; Bramnik, N.; Hu, Y.-S.; Fauth, F.; Wei, Y.; Ehrenberg, H.; Chen, G.; et al. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat. Commun. 2017, 8, 15888. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zhu, T.; Cai, C.; Wang, X.; Zhang, L.; Mai, L.; Zhou, L. A High-Energy NASICON-Type Na3.2MnTi0.8V0.2(PO4)3 Cathode Material with Reversible 3.2-Electron Redox Reaction for Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202219304. [Google Scholar] [CrossRef]
- Xu, C.; Hua, W.; Zhang, Q.; Liu, Y.; Dang, R.; Xiao, R.; Wang, J.; Chen, Z.; Ding, F.; Guo, X.; et al. Sufficient Utilization of Mn2+/Mn3+/Mn4+ Redox in NASICON Phosphate Cathodes towards High-Energy Na-Ions Batteries. Adv. Funct. Mater. 2023, 33, 2302810. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Tang, S.; Wang, T.; Wang, K.; Pan, L.; Wang, C. Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J. Colloid Interface Sci. 2023, 629, 121–132. [Google Scholar] [CrossRef]
- Qi, S.; Wu, D.; Dong, Y.; Liao, J.; Foster, C.W.; O’Dwyer, C.; Feng, Y.; Liu, C.; Ma, J. Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 2019, 370, 185–207. [Google Scholar] [CrossRef]
- Wang, M.Y.; Guo, J.Z.; Wang, Z.W.; Gu, Z.Y.; Nie, X.J.; Yang, X.; Wu, X.L. Sodium-Ion Batteries: Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodium-Ion Batteries. Small 2020, 16, 1907645. [Google Scholar] [CrossRef]
- Chen, M.; Hua, W.; Xiao, J.; Zhang, J.; Lau, V.W.-h.; Park, M.; Lee, G.-H.; Lee, S.; Wang, W.; Peng, J.; et al. Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. J. Am. Chem. Soc. 2021, 143, 18091–18102. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries. Adv. Mater. 2015, 27, 5895–5900. [Google Scholar] [CrossRef]
- Park, S.; Chotard, J.-N.; Carlier, D.; Moog, I.; Courty, M.; Duttine, M.; Fauth, F.; Iadecola, A.; Croguennec, L.; Masquelier, C. Crystal Structures and Local Environments of NASICON-Type Na3FeV(PO4)3 and Na4FeV(PO4)3 Positive Electrode Materials for Na-Ion Batteries. Chem. Mater. 2021, 33, 5355–5367. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Z.; Li, H.; Xu, M.; Wang, S.; Li, Z.; Wang, A.; Zhang, L.; He, L.; Li, S.; et al. All-climate and air-stable NASICON-Na2TiV(PO4)3 cathode with three-electron reaction toward high-performance sodium-ion batteries. Chem. Eng. J. 2022, 433, 133542. [Google Scholar] [CrossRef]
- Hu, P.; Cai, C.; Li, X.; Wei, Z.; Wang, M.; Chen, C.; Zhu, T.; Mai, L.; Zhou, L. V Doping in NASICON-Structured Na3MnTi(PO4)3 Enables High-Energy and Stable Sodium Storage. Adv. Funct. Mater. 2024, 34, 2302045. [Google Scholar] [CrossRef]
- Jiang, N.; Liu, J.; Wang, Y.; Wang, X.; Yang, C.; Liu, Y. Unlocking highly reversible V5+/V4+ redox reaction and fast-stable Na storage in NASICON cathodes by electronic structure optimization and solid-solution behavior regulation. Nano Energy 2024, 128, 109842. [Google Scholar] [CrossRef]
- Li, M.; Sun, C.; Ni, Q.; Sun, Z.; Liu, Y.; Li, Y.; Li, L.; Jin, H.; Zhao, Y. High Entropy Enabling the Reversible Redox Reaction of V4+/V5+ Couple in NASICON-Type Sodium Ion Cathode. Adv. Energy Mater. 2023, 13, 2203971. [Google Scholar] [CrossRef]
- Zhu, T.; Hu, P.; Cai, C.; Liu, Z.; Hu, G.; Kuang, Q.; Mai, L.; Zhou, L. Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries. Nano Energy 2020, 70, 104548. [Google Scholar] [CrossRef]
- Li, S.-Y.; Yin, Q.-M.; Gu, Z.-Y.; Liu, Y.; Liu, Y.-N.; Su, M.-Y.; Wu, X.-L. Cation/Anion-Dual regulation in Na3MnTi(PO4)3 cathode achieves the enhanced electrochemical properties of Sodium-Ion batteries. J. Colloid Interface Sci. 2024, 664, 381–388. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, C.; Xu, T.; Li, C.; Guo, X.; Jiang, N.; Chen, Y.; Xu, Y.; Zhu, R.; Zou, W.; et al. Multifunctional-Element doping of NASICON-Structured cathode enables High-Rate and stable sodium storage. Chem. Eng. J. 2024, 497, 154304. [Google Scholar] [CrossRef]
- Park, J.Y.; Shim, Y.; Kim, Y.-I.; Choi, Y.; Lee, H.J.; Park, J.; Wang, J.E.; Lee, Y.; Chang, J.H.; Yim, K.; et al. An iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications. J. Mater. Chem. A 2020, 8, 20436–20445. [Google Scholar] [CrossRef]
- Shen, X.; Su, Y.; He, S.; Li, Y.; Xu, L.; Yang, N.; Liao, Y.; Wang, M.; Wu, F. A zero-strain Na-deficient NASICON-type Na2.8Mn0.4V1.0Ti0.6(PO4)3 cathode for wide-temperature rechargeable Na-ion batteries. J. Mater. Chem. A 2023, 11, 16860–16870. [Google Scholar] [CrossRef]
- Sun, C.; Ni, Q.; Li, M.; Sun, Z.; Yuan, X.; Li, L.; Wang, K.; Jin, H.; Zhao, Y. Improving Rate Performance by Inhibiting Jahn–Teller Effect in Mn-Based Phosphate Cathode for Na-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2310248. [Google Scholar] [CrossRef]
- Wu, F.; Ma, H.; Ye, X.; Wu, S.; Zhang, H.; Liang, K.; Li, J.; Ren, Y.; Wei, P. Structural modulation of Na4Fe3(PO4)2P2O7 via cation engineering towards high-rate and long-cycling sodium-ion batteries. J. Colloid Interface Sci. 2025, 679, 132–140. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Xu, C.; Chen, Z.; Zhou, L.; Dang, R.; Zhao, J.; Hu, Y.-S. Designing high-performance phosphate cathode toward Ah-level Na-ion batteries. Energy Storage Mater. 2024, 72, 103764. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, G.; Lin, J.; Zhang, Y.; Fang, G.; Zhou, J.; Cao, X.; Liang, S. Reversible Multielectron Redox Chemistry in a NASICON-Type Cathode toward High-Energy-Density and Long-Life Sodium-Ion Full Batteries. Adv. Mater. 2023, 35, 2304428. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Bao, Y.; Li, S.; Chen, Y. Investigating the effect of calcination temperature on the electrochemical properties of Na4MnV(PO4)3/NC@CNTs cathode materials for sodium ion batteries. J. Energy Storage 2024, 90, 111910. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, G.; Lin, J.; Zhu, J.; Pan, J.; Fang, G.; Liang, S.; Cao, X. A multicationic-substituted configurational entropy-enabled NASICON cathode for high-power sodium-ion batteries. Nano Energy 2024, 128, 109812. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, M.; Fan, H.; Huang, C.; Liu, M.; Liang, X.; Hu, P.; Wang, X.; Wang, Q.; Lv, F.; et al. Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries. Materials 2025, 18, 2419. https://doi.org/10.3390/ma18112419
Zhang Y, Wang M, Fan H, Huang C, Liu M, Liang X, Hu P, Wang X, Wang Q, Lv F, et al. Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries. Materials. 2025; 18(11):2419. https://doi.org/10.3390/ma18112419
Chicago/Turabian StyleZhang, Yu, Mengyao Wang, Hao Fan, Chenyang Huang, Mingfei Liu, Xiaofa Liang, Ping Hu, Xuanpeng Wang, Qin Wang, Fei Lv, and et al. 2025. "Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries" Materials 18, no. 11: 2419. https://doi.org/10.3390/ma18112419
APA StyleZhang, Y., Wang, M., Fan, H., Huang, C., Liu, M., Liang, X., Hu, P., Wang, X., Wang, Q., Lv, F., & Zhou, L. (2025). Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries. Materials, 18(11), 2419. https://doi.org/10.3390/ma18112419