Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, Y.; Siwatch, P.; Karwasra, R.; Sharma, K.; Tripathi, S.K. Recent progress of layered structured P2- and O3- type transition metal oxides as cathode material for sodium-ion batteries. Renew. Sustain. Energy Rev. 2024, 192, 114167. [Google Scholar] [CrossRef]
- Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600275. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, R.; Kumari, V.; Chakrabarty, S.; Omar, S. Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 2023, 137, 101128. [Google Scholar] [CrossRef]
- Peng, B.; Zhou, Z.; Shi, J.; Huang, X.; Li, Y.; Ma, L. Earth-Abundant Fe-Mn-Based Compound Cathodes for Sodium-Ion Batteries: Challenges and Progress. Adv. Funct. Mater. 2024, 34, 2311816. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Meng, F.; Zhang, K.; Qi, Y.; Zeng, Y.; Cai, C.; Xiong, Y.; Jian, Z.; Sun, Y.; et al. Boosting Li-ion storage in Li2MnO3 by unequal-valent Ti4+-substitution and interlayer Li vacancies building. Chin. Chem. Lett. 2023, 34, 107494. [Google Scholar] [CrossRef]
- Zhang, C.; Chou, S.; Guo, Z.; Dou, S.-X. Beyond Lithium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2308001. [Google Scholar] [CrossRef]
- Wei, Q.; Huang, T.; Huang, X.; Wang, B.; Jiang, Y.; Tang, D.; Peng, D.-L.; Dunn, B.; Mai, L. High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2023, 2, 434–442. [Google Scholar] [CrossRef]
- Wu, C.; Xu, Y.; Song, J.; Hou, Y.; Jiang, S.; He, R.; Wei, A.; Tan, Q. Research progress on P2-type layered oxide cathode materials for sodium-ion batteries. Chem. Eng. J. 2024, 500, 157264. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, J.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Phosphate Framework Electrode Materials for Sodium Ion Batteries. Adv. Sci. 2017, 4, 1600392. [Google Scholar] [CrossRef]
- Hao, Z.; Shi, X.; Yang, Z.; Zhou, X.; Li, L.; Ma, C.-Q.; Chou, S. The Distance Between Phosphate-Based Polyanionic Compounds and Their Practical Application For Sodium-Ion Batteries. Adv. Mater. 2024, 36, 2305135. [Google Scholar] [CrossRef]
- Wang, N.; Ma, J.; Liu, Z.; Xu, J.; Zhao, D.; Wang, N.; Yang, C.; Cao, Y.; Lu, J.; Zhang, J. An air-stable iron/manganese-based phosphate cathode for high performance sodium-ion batteries. Chem. Eng. J. 2022, 433, 133798. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, Y.; Zhou, Q.; Zhang, H.; Wang, Z.; Liu, L.; Zhao, K.; Wu, F.; Gao, H. The importance of bond covalency for the activation of multielectron reactions in phosphate cathodes for sodium-ion batteries. Energy Storage Mater. 2024, 72, 103770. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, L.; Gao, T.; Chen, Z.; Hou, X.; Zhang, J.; Bai, Y.; Yang, L.; Liu, H.; Yang, C.; et al. Development of High-Performance Iron-Based Phosphate Cathodes toward Practical Na-Ion Batteries. J. Am. Chem. Soc. 2024, 146, 9819–9827. [Google Scholar] [CrossRef]
- Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Guo, X.; Wang, E.; Gu, Q.; Hu, Z.; Indris, S.; Wang, X.-L.; et al. Development and Investigation of a NASICON-Type High-Voltage Cathode Material for High-Power Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 2449–2456. [Google Scholar] [CrossRef]
- Guo, J.-Z.; Zhang, H.-X.; Gu, Z.-Y.; Du, M.; Lü, H.-Y.; Zhao, X.-X.; Yang, J.-L.; Li, W.-H.; Kang, S.; Zou, W.; et al. Heterogeneous NASICON-Type Composite as Low-Cost, High-Performance Cathode for Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2209482. [Google Scholar] [CrossRef]
- Huang, Q.; Hu, Z.; Chen, K.; Zeng, Z.; Sun, Y.; Kong, Q.; Feng, W.; Wang, K.; Li, Z.; Wu, Z.; et al. Partial Modification Strategies of NASICON-Type Na3V2(PO4)3 Materials for Cathodes of Sodium-Ion Batteries: Progress and Perspectives. ACS Appl. Energy Mater. 2023, 6, 2657–2679. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; You, Y.; Vinu, A.; Mai, L. NASICONs-type solid-state electrolytes: The history, physicochemical properties, and challenges. Interdiscip. Mater. 2023, 2, 91–110. [Google Scholar] [CrossRef]
- He, F.; Kang, J.; Liu, T.; Deng, H.; Zhong, B.; Sun, Y.; Wu, Z.; Guo, X. Research Progress on Electrochemical Properties of Na3V2(PO4)3 as Cathode Material for Sodium-Ion Batteries. Ind. Eng. Chem. Res. 2023, 62, 3444–3464. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, X.; Yan, L.; Kang, Q.; Du, H.; Wan, C.; Fan, M.; Ma, T. Vanadium-free NASICON-type electrode materials for sodium-ion batteries. J. Mater. Chem. A 2022, 10, 21816–21837. [Google Scholar] [CrossRef]
- Shao, Y.; Qian, Y.; Zhang, T.; Zhang, P.; Wang, H.; Qian, T.; Yan, C. Doping modification of sodium superionic conductor Na3V2(PO4)3 cathodes for sodium-ion batteries: A mini-review. Inorg. Chem. Front. 2024, 11, 4552–4567. [Google Scholar] [CrossRef]
- Gao, H.; Li, Y.; Park, K.; Goodenough, J.B. Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples. Chem. Mater. 2016, 28, 6553–6559. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Li, R.; Li, X.; Gao, J.; Hao, S.-M.; Zhou, W. Study on sodium storage properties of manganese-doped sodium vanadium phosphate cathode materials. Battery Energy 2023, 2, 20220042. [Google Scholar] [CrossRef]
- Wang, D.; Bie, X.; Fu, Q.; Dixon, D.; Bramnik, N.; Hu, Y.-S.; Fauth, F.; Wei, Y.; Ehrenberg, H.; Chen, G.; et al. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat. Commun. 2017, 8, 15888. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zhu, T.; Cai, C.; Wang, X.; Zhang, L.; Mai, L.; Zhou, L. A High-Energy NASICON-Type Na3.2MnTi0.8V0.2(PO4)3 Cathode Material with Reversible 3.2-Electron Redox Reaction for Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202219304. [Google Scholar] [CrossRef]
- Xu, C.; Hua, W.; Zhang, Q.; Liu, Y.; Dang, R.; Xiao, R.; Wang, J.; Chen, Z.; Ding, F.; Guo, X.; et al. Sufficient Utilization of Mn2+/Mn3+/Mn4+ Redox in NASICON Phosphate Cathodes towards High-Energy Na-Ions Batteries. Adv. Funct. Mater. 2023, 33, 2302810. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Tang, S.; Wang, T.; Wang, K.; Pan, L.; Wang, C. Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J. Colloid Interface Sci. 2023, 629, 121–132. [Google Scholar] [CrossRef]
- Qi, S.; Wu, D.; Dong, Y.; Liao, J.; Foster, C.W.; O’Dwyer, C.; Feng, Y.; Liu, C.; Ma, J. Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 2019, 370, 185–207. [Google Scholar] [CrossRef]
- Wang, M.Y.; Guo, J.Z.; Wang, Z.W.; Gu, Z.Y.; Nie, X.J.; Yang, X.; Wu, X.L. Sodium-Ion Batteries: Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodium-Ion Batteries. Small 2020, 16, 1907645. [Google Scholar] [CrossRef]
- Chen, M.; Hua, W.; Xiao, J.; Zhang, J.; Lau, V.W.-h.; Park, M.; Lee, G.-H.; Lee, S.; Wang, W.; Peng, J.; et al. Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. J. Am. Chem. Soc. 2021, 143, 18091–18102. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries. Adv. Mater. 2015, 27, 5895–5900. [Google Scholar] [CrossRef]
- Park, S.; Chotard, J.-N.; Carlier, D.; Moog, I.; Courty, M.; Duttine, M.; Fauth, F.; Iadecola, A.; Croguennec, L.; Masquelier, C. Crystal Structures and Local Environments of NASICON-Type Na3FeV(PO4)3 and Na4FeV(PO4)3 Positive Electrode Materials for Na-Ion Batteries. Chem. Mater. 2021, 33, 5355–5367. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Z.; Li, H.; Xu, M.; Wang, S.; Li, Z.; Wang, A.; Zhang, L.; He, L.; Li, S.; et al. All-climate and air-stable NASICON-Na2TiV(PO4)3 cathode with three-electron reaction toward high-performance sodium-ion batteries. Chem. Eng. J. 2022, 433, 133542. [Google Scholar] [CrossRef]
- Hu, P.; Cai, C.; Li, X.; Wei, Z.; Wang, M.; Chen, C.; Zhu, T.; Mai, L.; Zhou, L. V Doping in NASICON-Structured Na3MnTi(PO4)3 Enables High-Energy and Stable Sodium Storage. Adv. Funct. Mater. 2024, 34, 2302045. [Google Scholar] [CrossRef]
- Jiang, N.; Liu, J.; Wang, Y.; Wang, X.; Yang, C.; Liu, Y. Unlocking highly reversible V5+/V4+ redox reaction and fast-stable Na storage in NASICON cathodes by electronic structure optimization and solid-solution behavior regulation. Nano Energy 2024, 128, 109842. [Google Scholar] [CrossRef]
- Li, M.; Sun, C.; Ni, Q.; Sun, Z.; Liu, Y.; Li, Y.; Li, L.; Jin, H.; Zhao, Y. High Entropy Enabling the Reversible Redox Reaction of V4+/V5+ Couple in NASICON-Type Sodium Ion Cathode. Adv. Energy Mater. 2023, 13, 2203971. [Google Scholar] [CrossRef]
- Zhu, T.; Hu, P.; Cai, C.; Liu, Z.; Hu, G.; Kuang, Q.; Mai, L.; Zhou, L. Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries. Nano Energy 2020, 70, 104548. [Google Scholar] [CrossRef]
- Li, S.-Y.; Yin, Q.-M.; Gu, Z.-Y.; Liu, Y.; Liu, Y.-N.; Su, M.-Y.; Wu, X.-L. Cation/Anion-Dual regulation in Na3MnTi(PO4)3 cathode achieves the enhanced electrochemical properties of Sodium-Ion batteries. J. Colloid Interface Sci. 2024, 664, 381–388. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, C.; Xu, T.; Li, C.; Guo, X.; Jiang, N.; Chen, Y.; Xu, Y.; Zhu, R.; Zou, W.; et al. Multifunctional-Element doping of NASICON-Structured cathode enables High-Rate and stable sodium storage. Chem. Eng. J. 2024, 497, 154304. [Google Scholar] [CrossRef]
- Park, J.Y.; Shim, Y.; Kim, Y.-I.; Choi, Y.; Lee, H.J.; Park, J.; Wang, J.E.; Lee, Y.; Chang, J.H.; Yim, K.; et al. An iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications. J. Mater. Chem. A 2020, 8, 20436–20445. [Google Scholar] [CrossRef]
- Shen, X.; Su, Y.; He, S.; Li, Y.; Xu, L.; Yang, N.; Liao, Y.; Wang, M.; Wu, F. A zero-strain Na-deficient NASICON-type Na2.8Mn0.4V1.0Ti0.6(PO4)3 cathode for wide-temperature rechargeable Na-ion batteries. J. Mater. Chem. A 2023, 11, 16860–16870. [Google Scholar] [CrossRef]
- Sun, C.; Ni, Q.; Li, M.; Sun, Z.; Yuan, X.; Li, L.; Wang, K.; Jin, H.; Zhao, Y. Improving Rate Performance by Inhibiting Jahn–Teller Effect in Mn-Based Phosphate Cathode for Na-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2310248. [Google Scholar] [CrossRef]
- Wu, F.; Ma, H.; Ye, X.; Wu, S.; Zhang, H.; Liang, K.; Li, J.; Ren, Y.; Wei, P. Structural modulation of Na4Fe3(PO4)2P2O7 via cation engineering towards high-rate and long-cycling sodium-ion batteries. J. Colloid Interface Sci. 2025, 679, 132–140. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Xu, C.; Chen, Z.; Zhou, L.; Dang, R.; Zhao, J.; Hu, Y.-S. Designing high-performance phosphate cathode toward Ah-level Na-ion batteries. Energy Storage Mater. 2024, 72, 103764. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, G.; Lin, J.; Zhang, Y.; Fang, G.; Zhou, J.; Cao, X.; Liang, S. Reversible Multielectron Redox Chemistry in a NASICON-Type Cathode toward High-Energy-Density and Long-Life Sodium-Ion Full Batteries. Adv. Mater. 2023, 35, 2304428. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Bao, Y.; Li, S.; Chen, Y. Investigating the effect of calcination temperature on the electrochemical properties of Na4MnV(PO4)3/NC@CNTs cathode materials for sodium ion batteries. J. Energy Storage 2024, 90, 111910. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, G.; Lin, J.; Zhu, J.; Pan, J.; Fang, G.; Liang, S.; Cao, X. A multicationic-substituted configurational entropy-enabled NASICON cathode for high-power sodium-ion batteries. Nano Energy 2024, 128, 109812. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, M.; Fan, H.; Huang, C.; Liu, M.; Liang, X.; Hu, P.; Wang, X.; Wang, Q.; Lv, F.; et al. Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries. Materials 2025, 18, 2419. https://doi.org/10.3390/ma18112419
Zhang Y, Wang M, Fan H, Huang C, Liu M, Liang X, Hu P, Wang X, Wang Q, Lv F, et al. Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries. Materials. 2025; 18(11):2419. https://doi.org/10.3390/ma18112419
Chicago/Turabian StyleZhang, Yu, Mengyao Wang, Hao Fan, Chenyang Huang, Mingfei Liu, Xiaofa Liang, Ping Hu, Xuanpeng Wang, Qin Wang, Fei Lv, and et al. 2025. "Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries" Materials 18, no. 11: 2419. https://doi.org/10.3390/ma18112419
APA StyleZhang, Y., Wang, M., Fan, H., Huang, C., Liu, M., Liang, X., Hu, P., Wang, X., Wang, Q., Lv, F., & Zhou, L. (2025). Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries. Materials, 18(11), 2419. https://doi.org/10.3390/ma18112419