Graphene Supported NiFe-LDH and PbO2 Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NiFe-PbO2/S/rGO-X
2.3. Material Characterization
2.4. Preparation of the Ink of Working Electrode
2.5. Electrochemical Characterization
2.6. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jawhari, A.H.; Hasan, N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects. Materials 2023, 16, 3760. [Google Scholar] [CrossRef]
- Popov, A.A.; Afonnikova, S.D.; Varygin, A.D.; Bauman, Y.I.; Trenikhin, M.V.; Plyusnin, P.E.; Shubin, Y.V.; Vedyagin, A.A.; Mishakov, I.V. Pt1-xNix Alloy Nanoparticles Embedded in Self-Grown Carbon Nanofibers: Synthesis, Properties and Catalytic Activity in HER. Catalysts 2023, 13, 599. [Google Scholar] [CrossRef]
- Shamskhou, K.; Awada, H.; Yari, F.; Aljabour, A.; Schöfberger, W. A Molecular Binuclear Nickel (II) Schiff Base Complex for Efficient HER Electrocatalysis. Catalysts 2023, 13, 1348. [Google Scholar] [CrossRef]
- Seenivasan, S.; Seo, J. Inverting destructive electrochemical reconstruction of niobium nitride catalyst to construct highly efficient HER/OER catalyst. Chem. Eng. J. 2023, 454, 140558. [Google Scholar] [CrossRef]
- Xin, Y.M.; Hua, Q.Q.; Li, C.J.; Zhu, H.D.; Gao, L.G.; Ren, X.F.; Yang, P.X.; Liu, A.M. Enhancing electrochemical performance and corrosion resistance of nickel-based catalysts in seawater electrolysis: Focusing on OER and HER. J. Mater. Chem. A 2024, 12, 23147–23178. [Google Scholar] [CrossRef]
- Gan, J.C.; Jiang, Z.F.; Fang, K.M.; Li, X.S.; Zhang, L.; Feng, J.J.; Wang, A.J. Low Rh doping accelerated HER/OER bifunctional catalytic activities of nanoflower-like Ni-Co sulfide for greatly boosting overall water splitting. J. Colloid Interface Sci. 2025, 677, 221–231. [Google Scholar] [CrossRef]
- Khan, I.; Baig, N.; Bake, A.; Haroon, M.; Ashraf, M.; Al-Saadi, A.; Tahir, M.N.; Wooh, S. Robust electrocatalysts decorated three-dimensional laser-induced graphene for selective alkaline OER and HER. Carbon 2023, 213, 118292. [Google Scholar] [CrossRef]
- Liao, Y.Y.; He, R.C.; Pan, W.H.; Li, Y.; Wang, Y.Y.; Li, J.; Li, Y.X. Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution. Chem. Eng. J. 2023, 464, 142669. [Google Scholar] [CrossRef]
- Shi, J.W.; He, H.W.; Guo, Y.H.; Ji, F.; Li, J.; Zhang, Y.; Deng, C.W.; Fan, L.Y.; Cai, W.W. Enabling high-efficiency ethanol oxidation on NiFe-LDH via deprotonation promotion and absorption inhibition. J. Energy Chem. 2023, 85, 76–82. [Google Scholar] [CrossRef]
- Li, M.Y.; Yang, J.K.; Liang, S.; Hou, H.J.; Hu, J.P.; Liu, B.C.; Kumar, R.V. Review on clean recovery of discarded/spent lead-acid battery and trends of recycled products. J. Power Sources 2019, 436, 226853. [Google Scholar] [CrossRef]
- Hakimi, F.; Ghalkhani, M.; Rashchi, F.; Dolati, A. Pulse electrodeposition synthesis of Ti/PbO2-IrO2 nano-composite electrode to restrict the OER in the zinc electrowinning. J. Environ. Chem. Eng. 2024, 12, 111985. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.F.; Ye, Q.; Zhao, Y.X.; Cheng, Y.L. Rapid fabrication of FexNi2−xP4O12 and graphene hybrids as electrocatalyst for highly efficient oxygen evolution reaction. Appl. Catal. B-Environ. Energy 2023, 334, 122834. [Google Scholar] [CrossRef]
- González-Ingelmo, M.; García, M.L.; Oropeza, F.E.; Alvarez, P.; Blanco, C.; Santamaría, R.; Rocha, V.G. Ultra-high dispersion of Ni-based OER catalysts on graphene 3D networks enhances the in situ Fe3+ catalytic activation. J. Mater. Chem. A 2023, 11, 24248–24260. [Google Scholar] [CrossRef]
- Gong, Z.C.; Liu, J.J.; Yan, M.M.; Gong, H.S.; Ye, G.L.; Fei, H.L. Highly Durable and Efficient Seawater Electrolysis Enabled by Defective Graphene-Confined Nanoreactor. ACS Nano 2023, 17, 18372–18381. [Google Scholar] [CrossRef] [PubMed]
- Goyenola, C.; Stafström, S.; Hultman, L.; Gueorguiev, G.K. Structural Patterns Arising during Synthetic Growth of Fullerene-Like Sulfocarbide. J. Phys. Chem. C 2012, 116, 21124–21131. [Google Scholar] [CrossRef]
- Sfuncia, G.; Nicotra, G.; Giannazzo, F.; Pécz, B.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. 2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface. Crystengcomm 2023, 25, 5810–5817. [Google Scholar] [CrossRef]
- Yang, H.C.; Wang, C.H.; Zhang, Y.J.; Wang, Q.B. Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Sci. China-Mater. 2019, 62, 681–689. [Google Scholar] [CrossRef]
- Hong, X.D.; Li, S.L.; Tang, X.N.; Sun, Z.H.; Li, F. Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries. J. Alloy. Compd. 2018, 749, 586–593. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liang, Y.M.; Zhou, J.X. Recent Progress of Graphene Doping. Acta Chim. Sin. 2014, 72, 367–377. [Google Scholar] [CrossRef]
- Zhu, J.W.; Mu, S.C. Defect Engineering in the Carbon-Based Electrocatalysts: Insight into the Intrinsic Carbon Defects. Adv. Funct. Mater. 2020, 30, 2001097. [Google Scholar] [CrossRef]
- Huang, X.X.; Shen, T.; Zhang, T.; Qiu, H.L.; Gu, X.X.; Ali, Z.; Hou, Y.L. Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species. Adv. Energy Mater. 2020, 10, 1900375. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, K.J.; Yoon, S.G. Electrical and reliability characteristics of HfO2 gate dielectric treated in N2 and NH3 plasma atmosphere. Appl. Surf. Sci. 2005, 242, 313–317. [Google Scholar] [CrossRef]
- Petrovic, M.; Jovanovic, T.; Rancev, S.; Kovac, J.; Velinov, N.; Najdanovic, S.; Kostic, M.; Bojic, A. Plasma modified electrosynthesized cerium oxide catalyst for plasma and photocatalytic degradation of RB 19 dye. J. Environ. Chem. Eng. 2022, 10, 107931. [Google Scholar] [CrossRef]
- Rousseau, A.; Guaitella, O.; Gatilova, L.; Thevenet, F.; Guillard, C.; Röpcke, J.; Stancu, G.D. Photocatalyst activation in a pulsed low pressure discharge. Appl. Phys. Lett. 2005, 87, 221501. [Google Scholar] [CrossRef]
- Czech, T.; Sobczyk, A.T.; Jaworek, A. Optical emission spectroscopy of point-plane corona and back-corona discharges in air. Eur. Phys. J. D 2011, 65, 459–474. [Google Scholar] [CrossRef]
- Lu, L.L.; Xu, X.X.; An, K.L.; Wang, Y.; Shi, F.N. Coordination Polymer Derived NiS@g-C3N4 Composite Photocatalyst for Sulfur Vacancy and Photothermal Effect Synergistic Enhanced H2 Production. ACS Sustain. Chem. Eng. 2018, 6, 11869–11876. [Google Scholar] [CrossRef]
- Xie, J.F.; Zhang, H.; Li, S.; Wang, R.X.; Sun, X.; Zhou, M.; Zhou, J.F.; Lou, X.W.; Xie, Y. Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tsai, C.; Koh, A.L.; Cai, L.L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.H.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F.; et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef]
- Bo, L.L.; Shi, W.P.; Nian, F.; Hu, Y.S.; Pu, L.M.; Li, P.; Zhang, Z.X.; Tong, J.H. Interface engineering of Co3S4@Co3O4/N, S-doped carbon core@shell nanostructures serve as an excellent bifunctional ORR/OER electrocatalyst for rechargeable Zn-air battery. Sep. Purif. Technol. 2023, 307, 122536. [Google Scholar] [CrossRef]
- Chen, D.L.; Gan, C.L.; Fan, X.Q.; Zhang, L.; Li, W.; Zhu, M.H.; Quan, X. Improving the Dynamic Mechanical Properties of XNBR Using ILs/KH550-Functionalized Multilayer Graphene. Materials 2019, 12, 2800. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Lei, R.B.; Cao, X.; Ma, Q.; Zhang, G.W.; Guo, C.X.; Wang, X.W.; Qiu, Y.J. Anchored Ni nanocrystals boosting BiVO4 photoanode for highly efficient water oxidation via in-situ generation of Ni@NiOOH co-catalyst. Chem. Eng. J. 2023, 454, 139983. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, J.F.; Xiao, T.; Cao, L.Y.; Liu, D.H.; Li, X.Y.; Niu, M.F.; Xu, G.T.; Kajiyoshi, K.; Feng, L.L. V-doped Ni2P nanoparticle grafted g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution performance under visible light. Dalton Trans. 2023, 52, 7447–7456. [Google Scholar] [PubMed]
- Ye, X.M.; Meng, X.N.; Han, Z.Q.; Qi, Y.G.; Li, Z.M.; Tian, P.P.; Wang, W.S.; Li, J.; Li, Y.C.; Zhang, W.C.; et al. Designing Fe-containing polyhedral oligomeric silsesquioxane to endow superior mechanical and flame-retardant performances of polyamide 1010. Compos. Sci. Technol. 2023, 233, 109894. [Google Scholar] [CrossRef]
- Jiang, Z.X.; Yu, T.Q.; Chen, J.L.; Tan, K.X.; Deng, R.; Zhou, A.C.; Yin, S.B. Regulating Competitive Adsorption on Pt Nanoparticles by Introducing Pb to Expedite Hydrogen Production via Ammonia Oxidation. ACS Appl. Nano Mater. 2023, 6, 1889–1897. [Google Scholar] [CrossRef]
- Hamze, M.; Rezaei, M.; Tabaian, S.H. Cobalt ferrite coated on Ti/Ni/PbOx with enhanced electrocatalytic stability for chloride ions-contained water splitting. J. Electroanal. Chem. 2023, 948, 117823. [Google Scholar] [CrossRef]
- Jiang, G.S.; Chen, M.L.; Sun, Y.Z.; Wu, Y.F.; Pan, J.Q. Highly dispersed Ir/Fe nanoparticles anchored at nitrogen-doped activated pyrolytic carbon black as a high-performance OER catalyst for lead recovery. Dalton Trans. 2024, 53, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Shi, M.; Wu, C.X.; Nie, K.Q.; Wei, Z.; Jiang, X.P.; Liu, X.B.; Chen, H.L.; Tian, X.L.; Wu, D.X.; et al. Surface addition of Ag on PbO2 to enable efficient oxygen evolution reaction in pH-neutral media. Chem. Eng. J. 2024, 485, 150043. [Google Scholar] [CrossRef]
- Wang, X.B.; Wang, J.L.; Jiang, W.H.; Chen, C.; Wei, J.L.; Yu, B.H.; Chen, B.M.; Xu, R.D.; Yang, L.J. MnCo2O4 decorating porous PbO2 composite with enhanced activity and durability for acidic water oxidation. Fuel 2023, 338, 127344. [Google Scholar] [CrossRef]
- Wang, X.B.; Wang, J.L.; Tong, X.N.; Wu, S.; Wei, J.L.; Chen, B.M.; Xu, R.D.; Yang, L.J. Constructing of Pb-Sn/a-PbO2/β-PbO2-Co2MnO4 composite electrode for enhanced oxygen evolution and zinc electrowinning. Mater. Today Phys. 2023, 35, 101068. [Google Scholar]
- Wu, S.; Wang, J.L.; Wang, X.B.; Jiang, D.; Wei, J.L.; Tong, X.N.; Liu, Z.W.; Kong, Q.X.; Zong, N.X.; Xu, R.D.; et al. Mn3O4@C micro-flakes modified Ti/TiH2/β-PbO2 anode for accelerating oxygen evolution reaction in zinc electrowinning. Mater. Res. Bull. 2024, 171, 112605. [Google Scholar] [CrossRef]
- Bajdich, M.; García-Mota, M.; Vojvodic, A.; Norskov, J.K.; Bell, A.T. Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. J. Am. Chem. Soc. 2013, 135, 13521–13530. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Zheng, K.T.; Zhang, J.J.; Li, G.N.; Xu, C.J. Engineering Sulfur Vacancies in Spinel-Phase Co3S4 for Effective Electrocatalysis of the Oxygen Evolution Reaction. ACS Omega 2022, 7, 12430–12441. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Zhang, Z.; Tan, F.; Liu, H.; Li, X.; Wang, H.; Yang, Q. Graphene Supported NiFe-LDH and PbO2 Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction. Materials 2025, 18, 121. https://doi.org/10.3390/ma18010121
Yang T, Zhang Z, Tan F, Liu H, Li X, Wang H, Yang Q. Graphene Supported NiFe-LDH and PbO2 Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction. Materials. 2025; 18(1):121. https://doi.org/10.3390/ma18010121
Chicago/Turabian StyleYang, Tingting, Zheng Zhang, Fei Tan, Huayu Liu, Xingyu Li, Hongqi Wang, and Qing Yang. 2025. "Graphene Supported NiFe-LDH and PbO2 Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction" Materials 18, no. 1: 121. https://doi.org/10.3390/ma18010121
APA StyleYang, T., Zhang, Z., Tan, F., Liu, H., Li, X., Wang, H., & Yang, Q. (2025). Graphene Supported NiFe-LDH and PbO2 Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction. Materials, 18(1), 121. https://doi.org/10.3390/ma18010121