Metallic Materials: Structure Transition, Processing, Characterization and Applications
Author Contributions
Conflicts of Interest
References
- Li, L.; Liu, R.; Liu, Q.; Wu, Z.; Meng, X.; Fang, Y. Effects of Initial Microstructure on the Low-Temperature Plasma Nitriding of Ferritic Stainless Steel. Coatings 2022, 12, 1404. [Google Scholar] [CrossRef]
- Adachi, S.; Ueda, N. Combined plasma carburizing and nitriding of sprayed AISI 316L steel coating for improved wear resistance. Surf. Coat. Technol. 2014, 259, 44. [Google Scholar] [CrossRef]
- Ni, J.; Ma, H.; Wei, W.; An, X.; Yu, M.; Hu, J. Novel Effect of Post-Oxidation on the Comprehensive Performance of Plasma Nitriding Layer. Coatings 2024, 14, 86. [Google Scholar] [CrossRef]
- Kang, Q.; Wei, K.; Fan, H.; Liu, X.; Hu, J. Ultra-high efficient novel plasma aluminum-nitriding methodology and performances analysis. Scr. Mater. 2022, 220, 114902. [Google Scholar] [CrossRef]
- Li, R.; Wei, K.; Zhao, X.; Wu, M.; Liu, X.; Hu, J. Excellent behavior of coatings on 304 stainless steel by efficient low temperature plasma titanium-nitriding. Mater. Lett. 2022, 324, 132795. [Google Scholar] [CrossRef]
- Witkowska, J.; Rudnicki, J.; Piekoszewski, W.; Raugh, G.; Morgiel, J.; Wierzchon, T. Influence of low temperature plasma oxynitriding on the mechanical behavior of NiTi shape memory alloys. Vacuum 2018, 156, 135. [Google Scholar] [CrossRef]
- Goebel, J.; Reimann, M.; Norman, A.; dos Santos, J.F. Semi-stationary shoulder bobbin tool friction stir welding of AA2198-T851. J. Mater. Process. Technol. 2017, 245, 37. [Google Scholar] [CrossRef]
- Kovács, D.; Quintana, I.; Dobránszky, J. Effects of different variants of plasma nitriding on the properties of the nitrided layer. J. Mater. Eng. Perform. 2019, 28, 5485. [Google Scholar] [CrossRef]
- Shen, J.; Hu, J.; An, X. Regulation of phase partition and wear resistance for FeCoCrV high entropy alloy by heat treatment. Intermetallics 2024, 167, 108232. [Google Scholar] [CrossRef]
- Bae, J.W.; Seol, J.B.; Moon, J.; Sohn, S.S.; Jang, M.J.; Um, H.Y.; Lee, B.J.; Kim, H.S. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures. Acta Mater. 2018, 161, 388. [Google Scholar] [CrossRef]
- Urbikain, G.; Perez, J.M.; Lopez de Lacalle, L.N.; Andueza, A. Combination of friction drilling and form tapping processes on dissimilar materials for making nutless joints. J. Eng. Manuf. 2018, 232, 1007. [Google Scholar] [CrossRef]
- Nixon, M.E.; Lebensohn, R.A.; Cazacu, O.; Liu, C. Experimental and finite-element analysis of the anisotropic response of high-purity α-titanium in bending. Acta Mater. 2010, 58, 5759. [Google Scholar] [CrossRef]
- Bellas, L.; Castro, G.; Mera, L.; Mier, J.L.; García, A.; Varela, A. Effect of carbonitriding in a salt bath by a QPQ scheme on stainless steel 321 microstructure and service properties. Met. Sci. Heat Treat. 2016, 58, 369. [Google Scholar] [CrossRef]
- Hiremath, P.; Sharma, S.; Gowrishankar, M.C.; Shettar, M.; Gurumurthy, B.M. Effect of post carburizing treatments on residual stress distribution in plain carbon and alloy steels-a numerical analysis. J. Mater. Res. Technol. 2020, 9, 8439. [Google Scholar] [CrossRef]
- Salawu, E.Y.; Adediran, A.A.; Ajayi, O.O.; Inegbenebor, A.O.; Dirisu, J.O. On the analyses of carbon atom diffused into grey cast iron during carburisation process. Sci. Rep. 2022, 12, 18303. [Google Scholar] [CrossRef]
- Lee, I. Combination of plasma nitriding and nitrocarburizing treatments of AISI 630 martensitic precipitation hardening stainless steel. Surf. Coat. Technol. 2019, 376, 8. [Google Scholar] [CrossRef]
- Nishimoto, A.; Fukube, T.; Maruyama, T. Microstructural, mechanical, and corrosion properties of plasma-nitrided CoCrFeMnNi high-entropy alloys. Surf. Coat. Technol. 2019, 376, 52. [Google Scholar] [CrossRef]
- Egea, A.S.; Rodriguez, A.; Celentano, D.; Calleja, A.; De Lacalle, L.L. Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surf. Coat. Technol. 2019, 367, 327. [Google Scholar] [CrossRef]
- Tarnowski, M.; Borowski, T.; Skrzypek, S.; Kulikowski, K.; Wierzchoń, t. Shaping the structure and properties of titanium and Ti6Al7Nb titanium alloy in low-temperature plasma nitriding processes. J. Alloys Compd. 2021, 864, 158896. [Google Scholar] [CrossRef]
- Unal, O.; Maleki, E.; Varol, R. Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel. Int. J. Miner. Metall. Mater. 2021, 28, 657. [Google Scholar] [CrossRef]
- Ke, J.; Xie, Z.; Liu, R.; Jing, K.; Cheng, X.; Wang, H.; Wang, X.; Wu, X.; Fang, Q.; Liu, C. Development of Y2O3 Dispersion-Strengthened Copper Alloy by Sol-Gel Method. Materials 2022, 15, 2416. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, G.M.; Capone, F.G.; Tortora, L.; Stramaglia, F.; Simonelli, L.; Marini, C.; Kondoh, Y.; Kajita, T.; Katsufuji, T.; Mizokawa, T. The Local Structure and Metal-Insulator Transition in a Ba3Nb5−xTixO15 System. Materials 2022, 15, 4402. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Cheng, X.; Wei, J.; Luo, R. Characterization of Carbide Precipitation during Tempering for Quenched Dievar Steel. Materials 2022, 15, 6448. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhao, H.; Li, J.; Hu, K.; Qin, J. Effect of Pulsed Magnetic Field on the Microstructure of QAl9-4 Aluminium Bronze and Its Mechanism. Materials 2022, 15, 8336. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, D.; Li, M.; Hu, J.; An, X.; Wei, W. The Effect of Novel Complex Treatment of Annealing and Sandblasting on the Microstructure and Performance of Welded TA1 Titanium Plate. Materials 2023, 16, 2149. [Google Scholar] [CrossRef]
- Wu, R.; Huang, C.; Zhang, H.; Lv, H.; Sun, X.; Lan, H.; Zhang, W. Microstructure and High-Temperature Ablation Behaviour of Hafnium-Doped Tungsten-Yttrium Alloys. Materials 2023, 16, 2529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, Q.; Wang, Y.; Qiao, J.; Tang, T.; Zhou, J.; Liang, W.; Chen, G. Towards an Optimized Artificial Neural Network for Predicting Flow Stress of In718 Alloys at High Temperatures. Materials 2023, 16, 2663. [Google Scholar] [CrossRef] [PubMed]
- Newishy, M.; Jaskari, M.; Järvenpää, A.; Fujii, H.; Abdel-Aleem, H. Friction Stir Welding of Dissimilar Al 6061-T6 to AISI 316 Stainless Steel: Microstructure and Mechanical Properties. Materials 2023, 16, 4085. [Google Scholar] [CrossRef]
- Liu, L.; Jing, Q.; Geng, H.Y.; Li, Y.; Zhang, Y.; Li, J.; Li, S.; Chen, X.; Gao, J.; Wu, Q. Revisiting the High-Pressure Behaviors of Zirconium: Nonhydrostaticity Promoting the Phase Transitions and Absence of the Isostructural Phase Transition in β-Zirconium. Materials 2023, 16, 5157. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, W.; Zhao, Y.; Shi, W.; Zhou, X.; Rong, L.; Wen, S.; Wu, X.; Gao, K.; Huang, H. Effect of the Solid Solution and Aging Treatment on the Mechanical Properties and Microstructure of a Novel Al-Mg-Si Alloy. Materials 2023, 16, 7036. [Google Scholar] [CrossRef]
- Chen, G.; Liu, X.; Qiao, J.; Tang, T.; Zhang, H.; Xing, S.; Zhang, G.; Shi, Q. Improved Analytical Model for Thermal Softening in Aluminum Alloys Form Room Temperature to Solidus. Materials 2023, 16, 7358. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Shen, J.; Yu, M.; An, X.; Hu, J. Mechanism Analysis for the Enhancement of Low-Temperature Impact Toughness of Nodular Cast Iron by Heat Treatment. Materials 2024, 17, 513. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; He, Z.; Liu, X. Metallic Materials: Structure Transition, Processing, Characterization and Applications. Materials 2024, 17, 985. https://doi.org/10.3390/ma17050985
Hu J, He Z, Liu X. Metallic Materials: Structure Transition, Processing, Characterization and Applications. Materials. 2024; 17(5):985. https://doi.org/10.3390/ma17050985
Chicago/Turabian StyleHu, Jing, Ze He, and Xiliang Liu. 2024. "Metallic Materials: Structure Transition, Processing, Characterization and Applications" Materials 17, no. 5: 985. https://doi.org/10.3390/ma17050985
APA StyleHu, J., He, Z., & Liu, X. (2024). Metallic Materials: Structure Transition, Processing, Characterization and Applications. Materials, 17(5), 985. https://doi.org/10.3390/ma17050985