Considering the Bottom Edge Cutting Effect of the Carbon Fiber Reinforced Polymer Milling Force Prediction Model and Optimization of Machining Parameters
Abstract
:1. Introduction
2. Modeling Method and Experiment
2.1. Establish a Milling Force Prediction Model
2.1.1. Side-Edge Cutting Force Model
2.1.2. Bottom-Edge Cutting Force
2.2. Experiment
2.2.1. Finite Element Simulation Experiments
2.2.2. Milling Experiment
2.2.3. Verification of the CFRP Milling Simulation Model
2.2.4. Experimental Setup
3. Results and Discussion
3.1. Calculation of the Cutting Force Coefficient
3.2. Analysis of the Experimental Results
3.3. Verifying the Accuracy of the Milling Force Model
4. Parameter Optimization of the CFRP Milling Process
4.1. Establishment of the Multi-Objective Optimization Model
4.1.1. Determination of Optimization Variables
- There is a certain connection with the objective function, and it has a greater impact on the objective function.
- The parameters should be independent and of practical significance.
- First and second, reduce the number of variables as much as possible to simplify the optimization problem.
4.1.2. Optimization Objectives
4.1.3. Constraint Conditions
4.2. Multi-Objective Optimization Based on the Genetic Algorithm
4.3. Discussion and Verification of the Results
5. Conclusions and Discussion
- (1)
- The relationships among spindle speed, feed rate per tooth, cutting depth and cutting force were obtained under different fiber directions, the cutting force coefficient was calibrated by the inverse method, and the relation between the cutting force coefficient and machining parameters was obtained. After processing the cutting force data obtained by experiments and predicted by model, the maximum relative error between the experimental and predicted cutting force was 14.5%, which indicates the correctness of the cutting force prediction model.
- (2)
- Taking the unidirectional carbon fiber plate with a fiber direction angle of 45° as an example, and taking delamination damage, cutting force, and the material removal rate as the optimization objectives, the cutting parameters of CFRP were optimized to find the best processing schemes. In addition, optimization schemes were obtained when the optimization objectives were different. It can be concluded that when the minimum stratification factor is taken as the main objective, the cutting conditions of high speed, a small feed rate, and a small cutting depth can be selected. When the maximum material removal rate is taken as the main objective, the cutting conditions of a high speed, a large feed rate, and a large cutting depth can be selected. These studies will have practical guiding significance for the processing of CFRP.
- (3)
- At the same time, the relationships among cutting force, the delamination factor, and the material removal rate were obtained; that is, with an increase in the cutting force, the material removal rate gradually increases, and the delamination factor gradually increases. In actual manufacturing, more conditions can be set for this multi-objective optimization model to facilitate enterprises in selecting the optimal parameters that suit their actual manufacturing capabilities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.J.; Li, S.P.; Li, H.; Qin, X.D.; Xing, Y.Q.; Liu, H.B. The design and performance evaluation of assisted chip removal system in helical milling of CFRP/Ti stacks. Int. J. Adv. Manuf. Technol. 2020, 108, 1297–1308. [Google Scholar] [CrossRef]
- Hou, Y.; Yao, P.; Zhang, H.Y.; Liu, X.; Liu, H.L.; Huang, C.Z.; Zhang, Z.H. Chatter stability and surface quality in milling of unidirectional carbon fiber reinforced polymer. Compos. Struct. 2021, 271, 114–131. [Google Scholar] [CrossRef]
- Yue, C.X.; Liu, X.L.; Liang, S.Y. A model for predicting chatter stability considering contact characteristic between milling cutter and workpiece. Int. J. Adv. Manuf. Technol. 2017, 88, 2345–2354. [Google Scholar] [CrossRef]
- Mao, C.J.; Liu, K.Y.; Cepero-Mejias, F.; Zhang, C. Numerical investigation on milling performance and damage response of UD-CFRP laminates. Mech. Adv. Mater. Struct. 2024, 1–14. [Google Scholar] [CrossRef]
- Wang, F.J.; Li, Y.; Zhang, B.Y.; Deng, J.; Lin, Y.Q.; Yang, L.L.; Fu, R. Theoretical model of instantaneous milling force for CFRP milling with a ball-end milling cutter: Considering spatial dimension and temporal dimension discontinuity effects. J. Manuf. Process. 2022, 75, 346–362. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, T.; Hu, B.W.; Miu, G.Q.; Sun, Z.W.; Sandy, T. Analytical model for the prediction of milling forces: A review. Int. J. Adv. Manuf. Technol. 2024, 134, 1015–1041. [Google Scholar] [CrossRef]
- He, Y.L.; Qing, H.N.; Zhang, S.G.; Wang, D.Z.; Zhu, S.G. The cutting force and defect analysis in milling of carbon fiber-reinforced polymer (CFRP) composite. Int. J. Adv. Manuf. Technol. 2017, 93, 1829–1842. [Google Scholar] [CrossRef]
- Wang, H.; Tao, K.; Jin, T. Modeling and estimation of cutting forces in ball helical milling process. Int. J. Adv. Manuf. Technol. 2021, 117, 2807–2818. [Google Scholar] [CrossRef]
- Shang, S.; Qin, X.D.; Li, J.H.; Li, S.P.; Li, H.; Huang, T.; Jin, Y.; Sun, D. Modelling of cutting forces and researching calibration method in helical milling. Int. J. Adv. Manuf. Technol. 2018, 94, 2949–2960. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.L.; An, G.S.; Zhu, R.B.; Li, G.Q.; Ma, R. Multi-objective grey correlation analysis based on CFRP Helical Milling simulation model. Int. J. Adv. Manuf. Technol. 2024, 135, 1565–1585. [Google Scholar] [CrossRef]
- Li, Z.Q.; Liu, Q.; Ming, X.Z.; Wang, X.; Dong, Y.F. Cutting force prediction and analytical solution of regenerative chatter stability for helical milling operation. Int. J. Adv. Manuf. Technol. 2014, 73, 433–442. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.J.; Li, P.N.; Liu, X.P.; Qiu, X.Y.; Ko, T.J.; Jiang, Y. Effect of fiber orientation angles on the material removal behavior of CFRP during cutting process by multi-scale characterization. Int. J. Adv. Manuf. Technol. 2020, 106, 5017–5031. [Google Scholar] [CrossRef]
- Ning, H.F.; Zheng, H.L.; Wang, G.X. Establishment of Analytical Model for CFRP Cutting Force Considering the Radius of the Edge Circle. Materials 2022, 15, 2127. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pei, Z.J.; Cong, W.L. A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration. Int. J. Mach. Tools Manuf. 2020, 152, 103540. [Google Scholar] [CrossRef]
- Kim, D.G.; Yang, S.H. Efficient Analysis of CFRP Cutting Force and Chip Formation Based on Cutting Force Models Under Various Cutting Conditions. Int. J. Precis. Eng. Manuf. 2023, 24, 1235–1251. [Google Scholar] [CrossRef]
- Zhang, S.; Jiao, F.; Wang, X.; Niu, Y. Modeling of cutting forces in helical milling of unidirectional CFRP considering carbon fiber fracture. J. Manuf. Process. 2021, 68, 1495–1508. [Google Scholar] [CrossRef]
- Sheikh-Ahmad, J.; He, Y.L.; Qin, L. Cutting force prediction in milling CFRPs with complex cutter geometries. J. Manuf. Process. 2019, 45, 720–731. [Google Scholar] [CrossRef]
- Ning, H.F.; Zheng, H.L.; Yuan, X.M. Establishment of instantaneous milling force prediction model for multi-directional CFRP laminate. Adv. Mech. Eng. 2021, 13. [Google Scholar] [CrossRef]
- Wan, M.; Zhang, W.H.; Yang, Y. Phase width analysis of cutting forces considering bottom edge cutting and cutter runout calibration in flat end milling of titanium alloy. J. Mater. Process. Technol. 2011, 211, 1852–1863. [Google Scholar] [CrossRef]
- Ozsoy, N.; Eksi, S.; Ozsoy, M. Cutting parameters optimization of hybrid fiber composite during drilling. Mater. Test. 2023, 65, 291–302. [Google Scholar] [CrossRef]
- Mahdi, A.; Makhfi, S.; Habak, M.; Turki, Y.; Bouaziz, Z. Analysis and optimization of machining parameters in drilling woven carbon fiber reinforced polymer CFRP. Mater. Today Commun. 2023, 35, 105885. [Google Scholar] [CrossRef]
- Barik, T.; Parida, S.; Pal, K. Optimizing Process Parameters in Drilling of CFRP Laminates: A Combined MOORA–TOPSIS–VIKOR Approach. Fibers Polym. 2024, 25, 1859–1876. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.Y.; Ren, C.Z.; Chen, G.; Wang, Y. Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II. Int. J. Adv. Manuf. Technol. 2015, 76, 941–953. [Google Scholar] [CrossRef]
- Shen, Y.F.; Yang, T.; Liu, C.; Liu, S.N.; Du, Y. Cutting force modeling in orthogonal cutting of UD-CFRP considering the variable thickness of uncut material. Int. J. Adv. Manuf. Technol. 2021, 114, 1623–1634. [Google Scholar] [CrossRef]
- Wan, M.; Du, Y.X.; Zhang, W.H.; Yang, Y. Cutting force modeling in helical milling process of unidirectional CFRP. Acta Aeronaut. Astronaut. Sin. 2021, 42, 524134. [Google Scholar] [CrossRef]
- Budak, E.; Altintas, Y.; Armarego, E.J.A. Prediction of Milling Force Coefficients from Orthogonal Cutting Data. ASME. J. Manuf. Sci. Eng. 1996, 118, 216–224. [Google Scholar] [CrossRef]
- Ali, M.N.; Khalil, H.; El-Hofy, H. Analytical modeling of cutting force in vibration-assisted helical milling of Al 7075 alloy. J. Manuf. Process. 2024, 119, 372–384. [Google Scholar] [CrossRef]
- Fan, J.; Guan, Z.W.; Cantwell, W.J. Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading. Compos. Struct. 2014, 93, 2430–2436. [Google Scholar] [CrossRef]
- Cepero-Mejías, F.; Phadnis, V.A.; Kerrigan, K.; Curiel-Sosa, J.L. A finite element assessment of chip formation mechanisms in the machining of CFRP laminates with different fibre orientations. Compos. Struct. 2021, 268, 113966. [Google Scholar] [CrossRef]
- Lu, X.; Ridha, M.; Chen, B.Y.; Tan, V.B.C.; Tay, T.E. On cohesive element parameters and delamination modelling. Eng. Fract. Mech. 2019, 206, 278–296. [Google Scholar] [CrossRef]
- Krishnaraj, V.; Prabukarthi, A.; Ramanathan, A.; Elanghovan, N.; Senthil Kumar, M.; Zitoune, R.; Davim, J.P. Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos. Part B Eng. 2012, 43, 1791–1799. [Google Scholar] [CrossRef]
- Liu, L.L.; Yao, P.; Zhang, H.Y.; Chu, D.K.; Qu, S.S.; Huang, C.C. Laser trimming and performance analysis of mill-grinding tools for carbon fiber–reinforced plastics. Int. J. Adv. Manuf. Technol. 2024, 134, 1607–1619. [Google Scholar] [CrossRef]
- Su, C.J.; Cheng, X.; Yan, X.H.; Zheng, G.M.; Yang, L.; Mu, Z.G. Helical milling for making holes on carbon fiber-reinforced polymer. Int. J. Adv. Manuf. Technol. 2022, 121, 5197–5205. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhu, P.; Liu, Z.; Qi, S.J.; Zhu, Y.D. Research on prediction method of mechanical properties of open-hole laminated plain woven CFRP composites considering drilling-induced delamination damage. Mech. Adv. Mater. Struct. 2020, 28, 2515–2530. [Google Scholar] [CrossRef]
- Liu, J.; Chen, G.; Ji, C.H.; Qin, X.D.; Li, H.; Ren, C.Z. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP). Int. J. Mach. Tools Manuf. 2014, 86, 89–103. [Google Scholar] [CrossRef]
Material Parameter | Value |
---|---|
Density—ρ (kg/m3) | 1.81 |
Modulus of elasticity—E11 (GPa) | 235 |
Modulus of elasticity—E22, E33 (GPa) | 14 |
Poisson ratio—v12 = v13 | 0.2 |
Poisson ratio—v23 | 0.25 |
Tensile strength of Direction 1—XT (MPa) | 4620 |
Tensile strength of Direction 2—YT (MPa) | 1500 |
The compressive strength in Direction 1—XC (MPa) | 3960 |
The compressive strength in Direction 2—YC (MPa) | 3340 |
Modulus of shearing—G12, G13 (MPa) | 28,000 |
Modulus of shearing—G23 (MPa) | 55,000 |
Shear strength—S12, S13, S23 (MPa) | 1500 |
Fiber Direction Angle | Spindle Speed (rpm) | Feed Rate per Tooth (mm/z) | Axial Cutting Depth (mm) |
---|---|---|---|
0°, 45°, 90°, 135° | 4000 | 0.03 | 1 |
Fiber Direction Angle | Spindle Speed (rpm) | Feed Rate per Tooth (mm/z) | Axial Cutting Depth (mm) |
---|---|---|---|
0°/90° | 3000/4000/5000 | 0.01/0.015/0.03/0.05 | 1/1.5 |
Fiber Direction Angle | Spindle Speed (rpm) | Feed Rate per Tooth (mm/z) | Axial Cutting Depth (mm) |
---|---|---|---|
45°/135° | 3000/4000/5000 | 0.01/0.015/0.03/0.05 | 1/1.5 |
Machining Parameter | Spindle Speed, 4000 r/min | Cutting Depth, 1 mm | ||||
---|---|---|---|---|---|---|
x | y | z | ||||
Fiber direction angle | a | b | a | b | a | b |
0° | 37.9767 | 595.6194 | 42.5652 | 1095.5265 | 14.2917 | 65.17425 |
45° | 41.7885 | 1457.9613 | 20.3633 | 1313.0761 | 16.4530 | 143.4955 |
90° | 59.1815 | 1447.1342 | 27.1918 | 490.4374 | 15.0872 | 103.4310 |
135° | 39.0930 | 1555.1226 | 33.5799 | 788.5097 | 12.9637 | 146.6194 |
Machining Parameter | Spindle Speed, 4000 r/min | Cutting Depth, 1.5 mm | ||||
---|---|---|---|---|---|---|
x | y | z | ||||
Fiber direction angle | a | b | a | b | a | b |
0° | 49.3791 | 1105.890 | 79.2082 | 985.24 | 14.9633 | 73.3032 |
45° | 41.9662 | 2396.5987 | 45.1799 | 1278.8684 | 15.7889 | 190.2323 |
90° | 73.9529 | 2233.5007 | 29.9825 | 815.2297 | 16.0592 | 122.4129 |
135° | 70.8019 | 1912.3097 | 51.2523 | 878.3213 | 12.9908 | 179.5871 |
Cutting Force Coefficient | Fiber Direction Angle | |||
---|---|---|---|---|
0° | 45° | 90° | 135° | |
Krc | −1020.54 | −1877.27 | −1572.73 | −714.37 |
Kre | −27.83 | −27.38 | −42.58 | −33.87 |
Ktc | −220.57 | −68.42 | 649.58 | 179.62 |
Kte | 37.43 | 19.81 | 18.52 | 26.59 |
Kac | 12.76 | 73.38 | 29.80 | 51.76 |
Kae | 6.07 | 6.74 | 6.45 | 5.41 |
Ktb | 4396.99 | 4604.97 | −530.49 | 2029.62 |
Krb | 1416.41 | 1397.71 | 418.66 | −2802.49 |
Kab | 127.99 | 130.89 | 171.31 | 211.12 |
Fiber Direction Angle | Spindle Speed | Axial Cutting Depth | Feed Rate per Tooth |
---|---|---|---|
0° | 3000 r/min | 2 mm | 0.03 mm/min |
Milling Force (N) | x | y | z |
---|---|---|---|
Predicted value of milling force | 119.381 | 121.619 | 26.71 |
Experimental value of milling force | 106.95 | 118.323 | 23.32 |
Relative error | 11.6% | 2.9% | 14.5% |
Serial Number | Spindle Speed | Feed Rate per Tooth | Axial Cutting Depth | Cutting Force | Delamination Factor | Material Removal Rate |
---|---|---|---|---|---|---|
(r/min) | (mm/z) | (mm) | (N) | (mm3/min) | ||
1 | 4969.76 | 0.05 | 2.00 | 182.19 | 1.459 | 11,927.4 |
2 | 4903.16 | 0.01 | 0.50 | 27.53 | 1.208 | 589.00 |
3 | 4961.63 | 0.049 | 1.99 | 177.26 | 1.457 | 11,606.7 |
4 | 4959.13 | 0.026 | 1.95 | 94.98 | 1.382 | 6006.9 |
5 | 4964.77 | 0.045 | 1.99 | 160.49 | 1.445 | 10,590.2 |
6 | 4966.39 | 0.04 | 1.99 | 142.35 | 1.430 | 9449.2 |
7 | 4969.33 | 0.047 | 1.99 | 171.47 | 1.453 | 11,252.6 |
8 | 4953.01 | 0.035 | 1.98 | 125.78 | 1.417 | 8313.9 |
9 | 4956.25 | 0.027 | 1.91 | 96.85 | 1.387 | 6134.7 |
10 | 4966.39 | 0.04 | 1.99 | 143.04 | 1.431 | 9494.1 |
11 | 4884.56 | 0.01 | 0.53 | 28.66 | 1.215 | 634.9 |
12 | 4887.84 | 0.0116 | 0.54 | 30.59 | 1.224 | 737.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yan, M.; Lai, Y.; Wang, G.; Yang, Y. Considering the Bottom Edge Cutting Effect of the Carbon Fiber Reinforced Polymer Milling Force Prediction Model and Optimization of Machining Parameters. Materials 2024, 17, 5844. https://doi.org/10.3390/ma17235844
Zhang Y, Yan M, Lai Y, Wang G, Yang Y. Considering the Bottom Edge Cutting Effect of the Carbon Fiber Reinforced Polymer Milling Force Prediction Model and Optimization of Machining Parameters. Materials. 2024; 17(23):5844. https://doi.org/10.3390/ma17235844
Chicago/Turabian StyleZhang, Yiwei, Mengke Yan, Yushu Lai, Guixing Wang, and Yifan Yang. 2024. "Considering the Bottom Edge Cutting Effect of the Carbon Fiber Reinforced Polymer Milling Force Prediction Model and Optimization of Machining Parameters" Materials 17, no. 23: 5844. https://doi.org/10.3390/ma17235844
APA StyleZhang, Y., Yan, M., Lai, Y., Wang, G., & Yang, Y. (2024). Considering the Bottom Edge Cutting Effect of the Carbon Fiber Reinforced Polymer Milling Force Prediction Model and Optimization of Machining Parameters. Materials, 17(23), 5844. https://doi.org/10.3390/ma17235844