Mixed Conduction in A-Site Double-Perovskite Na1+xLa1-xZr2O6-δ Proton Conductors
Abstract
1. Introduction
2. Experimental Details
2.1. Preparation and Characterization
2.2. Conductivity Measurement
2.3. Transport Numbers
3. Results and Discussion
3.1. Phase Composition and Structural Analysis
3.2. Microstructure Characterization
3.3. Electrochemical Impedance Spectroscopy
3.4. Conductivity and Transport Numbers of NLZs
3.5. Conductivity and Transport Numbers of NLZ1 Sintered at 1300 °C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vignesh, D.; Rout, E. Technological Challenges and Advancement in Proton Conductors: A Review. Energy Fuels 2023, 37, 3428–3469. [Google Scholar] [CrossRef]
- Dudek, M.; Lis, B.; Lach, R.; Daugėla, S.; Šalkus, T.; Kežionis, A.; Mosiałek, M.; Sitarz, M.; Rapacz-Kmita, A.; Grzywacz, P. Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cell. Materials 2020, 13, 1874. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.; Singh, K.; Gill, S.; Fürstenhaupt, T.; Thangadurai, V. Chemically Stable Proton Conducting Doped BaCeO3-No More Fear to SOFC Wastes. Sci. Rep. 2013, 3, 2138. [Google Scholar] [CrossRef] [PubMed]
- Afif, A.; Radenahmad, N.; Rahman, S.M.H.; Torino, N.; Saqib, M.; Hossain, S.; Park, J.; Azad, A.K. Ceramic fuel cells using novel proton-conducting BaCe0.5Zr0.3Y0.1Yb0.05Zn0.05O3-δ electrolyte. J. Solid State Electrochem. 2022, 26, 111–120. [Google Scholar] [CrossRef]
- Zhu, L.; Cadigan, C.; Duan, C.; Huang, J.; Bian, L.; Le, L.; Hernandez, C.H.; Avance, V.; O’Hayre, R.; Sullivan, N.P. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Commun. Chem. 2021, 4, 121. [Google Scholar] [CrossRef]
- Wang, B.; Li, T.; Gong, F.; Othman, M.H.D.; Xiao, R. Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell—A comprehensive review. Fuel Process. Technol. 2022, 235, 107380. [Google Scholar] [CrossRef]
- Matsumoto, H.; Shimura, T.; Iwahara, H.; Higuchi, T.; Yashiro, K.; Kaimai, A.; Kawada, T.; Mizusaki, J. Hydrogen separation using proton-conducting perovskites. J. Alloys Compd. 2006, 408–412, 456–462. [Google Scholar] [CrossRef]
- Hashim, S.S.; Somalu, M.R.; Loh, K.S.; Liu, S.; Zhou, W.; Sunarso, J. Perovskite-based proton conducting membranes for hydrogen separation: A review. Int. J. Hydrogen Energy 2018, 43, 15281–15305. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Li, Y.; Zhou, H.; He, Z.; Liu, H.; Dai, L. A limiting current hydrogen sensor based on BaHf0.8Fe0.2O3-δ dense diffusion barrier and BaHf0.7Sn0.1In0.2O3-δ protonic conductor. Ceram. Int. 2022, 48, 22072–22082. [Google Scholar] [CrossRef]
- Hossain, M.K.; Chanda, R.; El-Denglawey, A.; Emrose, T.; Rahman, M.T.; Biswas, M.C.; Hashizume, K. Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review. Ceram. Int. 2021, 47, 23725–23748. [Google Scholar] [CrossRef]
- Bassano, A.; Buscaglia, V.; Viviani, M.; Bassoli, M.; Buscaglia, M.T.; Sennour, M.; Thorel, A.; Nanni, P. Synthesis of Y-doped BaCeO3 nanopowders by a modified solid-state process and conductivity of dense fine-grained ceramics. Solid State Ion. 2009, 180, 168–174. [Google Scholar] [CrossRef]
- Fu, Y.; Weng, C. Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties. Ceram. Int. 2014, 40, 10793–10802. [Google Scholar] [CrossRef]
- Kurita, N.; Fukatsu, N.; Ito, K.; Ohashi, T. Protonic conduction domain of indium-doped calcium zirconate. J. Electrochem. Soc. 1995, 142, 1552–1559. [Google Scholar] [CrossRef]
- Huang, W.; Li, Y.; Lu, H.; Ding, Y.; Liu, Y. Conductivities and transport properties of Ca(Zr/Hf)0.9Sc0.1O2.95. Ceram. Int. 2021, 47, 34568–34574. [Google Scholar] [CrossRef]
- Liang, K.C.; Nowick, A.S. High-temperature protonic conduction in mixed perovskite ceramics. Solid State Ion. 1993, 61, 77–81. [Google Scholar] [CrossRef]
- Nowick, A.S.; Yang, D. High temperature protonic conductors with perovskite-related structures. Solid State Ion. 1995, 77, 137–146. [Google Scholar] [CrossRef]
- Bohn, H.G.; Schober, T.; Mono, T.; Schilling, W. The high temperature proton conductor Ba3Ca1.18Nb1.82O9−α. I. electrical conductivity. Solid State Ion. 1999, 117, 219–228. [Google Scholar] [CrossRef]
- Choi, M.; Paik, J.; Kim, D.; Woo, D.; Lee, J.; Kim, S.J.; Lee, J.; Lee, W. Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes. Energy Environ. Sci. 2021, 14, 6476–6483. [Google Scholar] [CrossRef]
- Klinsrisuk, S.; Irvine, J.T.S. Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3−δ electrolyte membrane. Catal. Today 2017, 286, 41–50. [Google Scholar] [CrossRef]
- Yajima, T.; Iwahara, H.; Fukatsu, N.; Ohashi, T.; Koide, K. Measurement of hydrogen content in molten aluminum using proton conducting ceramic sensor. Keikinzoku/J. Jpn. Inst. Light Met. 1992, 42, 263–267. [Google Scholar] [CrossRef]
- Kurita, N.; Fukatsu, N.; Ohashi, T.; Miyamoto, S.; Sato, F.; Nakai, H.; Irie, K. The measurement of hydrogen activities in molten copper using an oxide protonic conductor. Metall. Mater. Trans. B 1996, 27, 929–935. [Google Scholar] [CrossRef]
- Konishi, H.; Matsumoto, T.; Usui, T.; Mizukoshi, T. Characteristic of Proton Conductor Prepared by Spark Plasma Sintering in the Simulated Coke Oven Gas. Tetsu-Hagané 2010, 96, 629–635. [Google Scholar] [CrossRef]
- Lee, W.K.; Nowick, A.S.; Boatner, L.A. Protonic conduction in acceptor-doped KTaO3 crystals. Solid State Ion. 1986, 18–19, 989–993. [Google Scholar] [CrossRef]
- Shin, S.; Huang, H.H.; Ishigame, M.; Iwahara, H. Protonic conduction in the single crystals of SrZrO3 and SrCeO3 doped with Y2O3. Solid State Ion. 1990, 40–41, 910–913. [Google Scholar] [CrossRef]
- Slade, R.C.T.; Singh, N. Generation of charge carriers and an H/D isotope effect in proton-conducting doped barium cerate ceramics. J. Mater. Chem. 1991, 1, 441–445. [Google Scholar] [CrossRef]
- Cook, R.L.; Sammells, A.F. On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells. Solid State Ion. 1991, 45, 311–321. [Google Scholar] [CrossRef]
- Münch, W.; Kreuer, K.D.; Seifert, G.; Maier, J. Proton diffusion in perovskites: Comparison between BaCeO3, BaZrO3, SrTiO3 and CaTiO3, using quantum molecular dynamics. Solid State Ion. 2000, 136–137, 183–189. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton-conducting oxides. Annu. Rev. Mater. Res. 2003, 33, 333–359. [Google Scholar] [CrossRef]
- Bisht, R.S.; Ramanathan, S. Cool proton conductors. Nat. Energy 2022, 7, 1124–1125. [Google Scholar] [CrossRef]
- Yajima, T.; Kazeoka, H.; Yogo, T.; Iwahara, H. Proton conduction in sintered oxides based on CaZrO3. Solid State Ion. 1991, 47, 271–275. [Google Scholar] [CrossRef]
- Yue, H.; Ruiming, Q.; Wenchao, L.; Libin, L.; Tong, L.; Jihao, Z.; Yao, W.; Jianping, L.; Jin, H.; Fanglin, C. Review: Measurement of partial electrical conductivities and transport numbers of mixed ionic-electronic conducting oxides. J. Power Sources 2022, 528, 231201. [Google Scholar]
- Lim, D.K.; Park, C.J.; Choi, M.B.; Park, C.N.; Song, S.J. Partial conductivities of mixed conducting BaCe0.65Zr0.2Y0.15O3-δ. Int. J. Hydrogen Energy 2010, 35, 10624–10629. [Google Scholar] [CrossRef]
- Sherafat, Z.; Paydar, M.H.; Antunes, I.; Nasani, N.; Brandão, A.D.; Fagg, D.P. Modeling of electrical conductivity in the proton conductor Ba0.85K0.15ZrO3-δ. Electrochim. Acta 2015, 165, 443–449. [Google Scholar] [CrossRef]
- Guan, J.; Dorris, S.E.; Balachandran, U.; Liu, M. Transport properties of BaCe0.95Y0.05O3-α mixed conductors for hydrogen separation. Solid State Ion. 1997, 100, 45–52. [Google Scholar] [CrossRef]
- Kang, S.G. First-principles examination of low tolerance factor perovskites. Int. J. Quantum Chem. 2017, 117, e25420. [Google Scholar] [CrossRef]
- Hagiwara, T.; Nomura, K.; Kageyama, H. Crystal structure analysis of Ln2Zr2O7 (Ln = Eu and La) with a pyrochlore composition by high-temperature powder X-ray diffraction Note: La2Zr2O7 at 298 K. J. Ceram. Soc. Jpn. 2017, 125, 65–70. [Google Scholar] [CrossRef]
- Iguchi, F.; Sata, N.; Yugami, H. Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC. J. Mater. Chem. 2010, 20, 6265–6270. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Zhang, N.; Ding, Y.; Li, H.; Chen, G. Electrical properties and chemical stability of Br addition in BaCe0.8Gd0.2O3-α proton-conducting electrolyte. Ceram. Int. 2020, 46, 26027–26034. [Google Scholar] [CrossRef]
- Islam, M.S.; Wang, S.; Nolan, A.M.; Mo, Y. First-Principles Computational Design and Discovery of Novel Double-Perovskite Proton Conductors. Chem. Mater. 2021, 33, 8278–8288. [Google Scholar] [CrossRef]
- Loureiro, F.J.A.; Ramasamy, D.; Ribeiro, A.F.G.; Mendes, A.; Fagg, D.P. Underscoring the transport properties of yttrium-doped barium cerate in nominally dry oxidising conditions. Electrochim. Acta 2020, 334, 135625. [Google Scholar] [CrossRef]
- Lim, D.K.; Choi, M.B.; Lee, K.T.; Yoon, H.S.; Wachsman, E.D.; Song, S.J. Non–monotonic conductivity relaxation of proton-conducting BaCe0.85Y0.15O3−δ upon hydration and dehydration. Int. J. Hydrogen Energy 2011, 36, 9367. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Li, Y.; Zhou, G.; Huang, W. Proton transport in unsintered BaCe0.8Y0.2O3-α for easily prepared electrochemical devices. J. Rare Earths 2024, in press. [Google Scholar] [CrossRef]
- Kochetova, N.; Animitsa, I.; Medvedev, D.; Demin, A.; Tsiakaras, P. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv. 2016, 6, 73222–73268. [Google Scholar] [CrossRef]
- Ling, C.D.; Avdeev, M.; Kharton, V.V. Structures, Phase Transitions, Hydration, and Ionic Conductivity of Ba4Ta2O9. Chem. Mater. 2010, 22, 532–540. [Google Scholar] [CrossRef]
- Minh, N.Q. Ceramic fuel cell. J. Am. Ceram. Soc. 1993, 76, 563–588. [Google Scholar] [CrossRef]
Composition | T (°C) | Atmosphere | σtot (S/cm) | /eV | /eV | /eV | /eV | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
BaCe0.9Y0.1O3-δ | 600 | ∼0.1 kPa H2O, O2 | ~1 × 10−2 | 0.37 | 0.42 | 1.71 | 1.75 | ∼0.40 | ∼0.55 | ∼0.05 | [40] |
BaCe0.85Y0.15O3-δ | 800 | 2.63 kPa H2O, Air | ~4.9 × 10−2 | 0.69 | 0.29 | 0.92 | 1.27 | ∼0.33 | ∼0.22 | ∼0.45 | [41] |
BaCe0.8Y0.2O3-α | 800 | ∼0.62 kPa H2O, O2 | 8.9 × 10−3 | − | 0.28 | 1.20 | 0.99 | 0.19 | 0.42 | 0.40 | [42] |
CaZr0.9Sc0.1O3-α | 800 | 2.34 kPa H2O, Air | 1.6 × 10−3 | 0.73 | 0.57 | 1.13 | 0.39 | 0.41 | 0.16 | 0.43 | [14] |
CaHf0.9Sc0.1O3-α | 800 | 2.34 kPa H2O, Air | 9.7 × 10−4 | 0.90 | 0.77 | 1.26 | 1.52 | 0.44 | 0.16 | 0.40 | [14] |
NaLaZr2O6 | 800 | 2.34 kPa H2O, Air | 3.7 × 10−6 | 1.10 | 0.71 | 1.02 | 1.24 | 0.06 | 0.14 | 0.80 | This work |
Na1.1La0.9Zr2O6-δ | 800 | 2.34 kPa H2O, Air | 3.6 × 10−6 | 0.65 | 0.52 | 0.91 | 1.50 | 0.52 | 0.13 | 0.35 | This work |
Na1.2La0.8Zr2O6-δ | 800 | 2.34 kPa H2O, Air | 4.7 × 10−6 | 0.82 | 0.67 | 1.12 | 1.48 | 0.48 | 0.20 | 0.32 | This work |
La0.9Zr2O6-δ | 800 | 2.34 kPa H2O, Air | 7.9 × 10−3 | 1.11 | 0.70 | 1.11 | 1.51 | 0.01 | 0.91 | 0.08 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Gao, Z.; Li, Y.; Ding, Y.; Lu, J.; Zhuang, C.; Yue, P.; Zhang, W. Mixed Conduction in A-Site Double-Perovskite Na1+xLa1-xZr2O6-δ Proton Conductors. Materials 2024, 17, 5211. https://doi.org/10.3390/ma17215211
Huang W, Gao Z, Li Y, Ding Y, Lu J, Zhuang C, Yue P, Zhang W. Mixed Conduction in A-Site Double-Perovskite Na1+xLa1-xZr2O6-δ Proton Conductors. Materials. 2024; 17(21):5211. https://doi.org/10.3390/ma17215211
Chicago/Turabian StyleHuang, Wenlong, Zheng Gao, Ying Li, Yushi Ding, Jiayao Lu, Chunsheng Zhuang, Pengfei Yue, and Wei Zhang. 2024. "Mixed Conduction in A-Site Double-Perovskite Na1+xLa1-xZr2O6-δ Proton Conductors" Materials 17, no. 21: 5211. https://doi.org/10.3390/ma17215211
APA StyleHuang, W., Gao, Z., Li, Y., Ding, Y., Lu, J., Zhuang, C., Yue, P., & Zhang, W. (2024). Mixed Conduction in A-Site Double-Perovskite Na1+xLa1-xZr2O6-δ Proton Conductors. Materials, 17(21), 5211. https://doi.org/10.3390/ma17215211