Investigation of Structural, Elastic and Magnetic Properties of CoCr2−xZrxO4 Nanoparticles
Abstract
:1. Introduction
2. Experimental Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyons, D.H.; Kaplan, T.A.; Dwight, K.; Menyuk, N. Classical theory of the ground spin-state in cubic spinels. Phys. Rev. B 1962, 126, 540–555. [Google Scholar] [CrossRef]
- van Groenou, A.B.; Bongers, P.F.; Stuyts, A.L. Magnetism, microstructure and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 1969, 3, 317–392. [Google Scholar] [CrossRef]
- Tomiyasu, K.; Fukunaga, J.; Suzuki, H. Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements. Phys. Rev. B—Condens. Matter Mater. Phys. 2004, 70, 214434. [Google Scholar] [CrossRef]
- Lawes, G.; Melot, B.; Page, K.; Ederer, C.; Hayward, M.A.; Proffen, T.; Seshadri, R. Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys. Rev. B—Condens. Matter Mater. Phys. 2006, 74, 024413. [Google Scholar] [CrossRef]
- Ishibashi, H.; Yasumi, T. Structural transition of spinel compound NiCr2O4 at ferrimagnetic transition temperature. J. Magn. Magn. Mater. 2007, 310, e610–e612. [Google Scholar] [CrossRef]
- Bush, A.A.; Shkuratov, V.Y.; Kamentsev, K.E.; Cherepanov, V.M. Preparation and X-Ray diffraction, dielectric, and Mössbauer characterization of Co1−xNix Cr2O4 solid solutions. Inorg. Mater. 2013, 49, 296–302. [Google Scholar] [CrossRef]
- Kim, I.; Oh, Y.S.; Liu, Y.; Chun, S.H.; Lee, J.-S.; Ko, K.-T.; Park, J.-H.; Chung, J.-H.; Kim, K.H. Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing. Appl. Phys. Lett. 2009, 94, 042505. [Google Scholar] [CrossRef]
- Choi, Y.J.; Okamoto, J.; Huang, D.J.; Chao, K.S.; Lin, H.J.; Chen, C.T.; Van Veenendaal, M.; Kaplan, F.T.; Cheong, S.W. Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4. Phys. Rev. Lett. 2009, 102, 067601. [Google Scholar] [CrossRef] [PubMed]
- Köseoğlu, Y.; Baykal, A.; Toprak, M.S.; Gözüak, F.; Başaran, A.C.; Aktaş, B. Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Alloys Compd. 2008, 462, 209–213. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Siddiquah, M.R. Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials. J. Alloys Compd. 2008, 453, 513–518. [Google Scholar] [CrossRef]
- He, H.Y. Structural and Magnetic Property of Co1−x Nix Fe2O4 Nanoparticles Synthesized by Hydrothermal Method. Int. J. Appl. Ceram. Technol. 2014, 11, 626–636. [Google Scholar] [CrossRef]
- Zakrzewska, K. Mixed oxides as gas sensors. Thin Solid Films 2001, 391, 229–238. [Google Scholar] [CrossRef]
- Kim, B.-N.; Hiraga, K.; Morita, K.; Sakka, Y. A high-strain-rate superplastic ceramic. Nature 2001, 413, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Galdikas, A.; Martūnas, Z.; Šetkus, A. SnInO-based chlorine gas sensor. Sens. Actuators B Chem. 1992, 7, 633–636. [Google Scholar] [CrossRef]
- Reddy CV, G.; Manorama, S.V.; Rao, V.J. Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators B Chem. 1999, 55, 90–95. [Google Scholar] [CrossRef]
- Durrani, S.K.; Hussain, S.Z.; Saeed, K.; Khan, Y.; Arif, M.; Ahmed, N. Hydrothermal synthesis and characterization of nanosized transition metal chromite spinels. Turk. J. Chem. 2012, 36, 111–120. [Google Scholar] [CrossRef]
- Dutta, D.P.; Manjanna, J.; Tyagi, A.K. Magnetic properties of sonochemically synthesized CoCr2O4 nanoparticles. J. Appl. Phys. 2009, 106, 043915. [Google Scholar] [CrossRef]
- Li, S.; Zhao, G.; Bi, H.; Huang, Z.; Lai, H.; Gai, R.; Du, Y. Synthesis and anomalous magnetic properties of CoCr2O4 nanocrystallites with lattice distortion. J. Magn. Magn. Mater. 2006, 305, 448–451. [Google Scholar] [CrossRef]
- Li, S.; Bi, H.; Tian, Z.; Xu, F.; Gu, B.; Lu, M.; Du, Y. Surface spin pinning effect of polymer decomposition residues in CoCr2O4 nanocrystallites system. J. Magn. Magn. Mater. 2004, 281, 11–16. [Google Scholar] [CrossRef]
- Rath, C.; Mohanty, P. Magnetic phase transitions in cobalt chromite nanoparticles. J. Supercond. Nov. Magn. 2011, 24, 629–633. [Google Scholar] [CrossRef]
- Hu, D.-S.; Han, A.-J.; Ye, M.-Q.; Chen, H.-H.; Zhang, W. Preparation and Spectroscopy Analysis of Spinel CoCr2−xAlxO4 by Low-temperature Combustion Synthesis. J. Inorg. Mater. 2011, 26, 285–289. [Google Scholar] [CrossRef]
- Singh, R.K.; Yadav, A.; Narayan, A.; Singh, A.K.; Verma, L.; Verma, R.K. Thermal, structural and magnetic studies on chromite spinel synthesized using citrate precursor method and annealed at 450 and 650 °C. J. Therm. Anal. Calorim. 2012, 107, 197–204. [Google Scholar] [CrossRef]
- Cui, H.; Zayat, M.; Levy, D. Sol-gel synthesis of nanoscaled spinels using propylene oxide as a gelation agent. J. Sol-Gel Sci. Technol. 2005, 35, 175–181. [Google Scholar] [CrossRef]
- Das, D.; Biswas, R.; Ghosh, S. Systematic analysis of structural and magnetic properties of spinel CoB2O4 (B = Cr, Mn and Fe) compounds from their electronic structures. J. Phys. Condens. Matter 2016, 28, 446001. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Ullah, A.; Rahman, S.; Tahir, A.; Nadeem, K.; ur Rehman, M.A.; Hussain, S. Structural, magnetic, and dielectric properties of multiferroic Co1−xMgxCr2O4 nanoparticles. J. Magn. Magn. Mater. 2017, 433, 178–186. [Google Scholar] [CrossRef]
- Kumar, N.; Sundaresan, A. On the observation of negative magnetization under zero-field-cooled process. Solid State Commun. 2010, 150, 1162–1164. [Google Scholar] [CrossRef]
- Suchomski, C.; Reitz, C.; Brezesinski, K.; de Sousa, C.T.; Rohnke, M.; Iimura, K.-I.; de Araujo, J.P.E.; Brezesinski, T. Structural, Optical, and Magnetic Properties of Highly Ordered Mesoporous MCr2O4 and MCr2–xFexO4 (M = Co, Zn) Spinel Thin Films with Uniform 15 nm Diameter Pores and Tunable Nanocrystalline Domain Sizes. Chem. Mater. 2012, 24, 155–165. [Google Scholar] [CrossRef]
- Nadeem, K.; Rehman, H.U.; Zeb, F.; Ali, E.; Kamran, M.; Noshahi, N.; Abbas, H. Magnetic phase diagram and dielectric properties of Mn doped CoCr2O4 nanoparticles. J. Alloys Compd. 2020, 832, 155031. [Google Scholar] [CrossRef]
- Kamran, M.; Nadeem, K.; Mumtaz, M. Negative and anomalous T-dependent magnetization trend in CoCr2O4 nanoparticles. Solid State Sci. 2017, 72, 21–27. [Google Scholar] [CrossRef]
- Kumar, G.J.; Rath, C. Study of exchange bias and memory effect in core-shell CoCr2O4 nanoparticles. J. Magn. Magn. Mater. 2018, 466, 69–74. [Google Scholar] [CrossRef]
- Tian, Z.; Zhu, C.; Wang, J.; Xia, Z.; Liu, Y.; Yuan, S. Size dependence of structure and magnetic properties of CoCr2O4 nanoparticles synthesized by hydrothermal technique. J. Magn. Magn. Mater. 2015, 377, 176–182. [Google Scholar] [CrossRef]
- Kavitha, S.; Kurian, M. Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles. J. Alloys Compd. 2019, 799, 147–159. [Google Scholar] [CrossRef]
- Naik, E.I.; Naik, H.B.; Viswanath, R.; Kirthan, B.R.; Prabhakara, M.C. Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method. Chem. Data Collect. 2020, 29, 100505. [Google Scholar] [CrossRef]
- Monaji, V.R.; Indla, S.; Rayaprol, S.; Sowmya, S.; Srinivas, A.; Das, D. Temperature dependent magnetic properties of Co1+xTxFe2−2xO4 (T = Zr, Ti). J. Alloys Compd. 2017, 700, 92–97. [Google Scholar] [CrossRef]
- Xu, Q.; Zhan, D.; Huang, D.-P.; Liu, H.-X.; Chen, W.; Zhang, F. Dielectric inspection of BaZr0.2Ti0.8O3 ceramics under bias electric field: A survey of polar nano-regions. Mater. Res. Bull. 2012, 47, 1674–1679. [Google Scholar] [CrossRef]
- Faraz, A. Effect of Concentration of Zr4+ and Ni2+ Dopants on Electrical, Magnetic and Y–K Angle of Mg–Cu Complex Spinel Nanoferrites. J. Supercond. Nov. Magn. 2012, 25, 1055–1063. [Google Scholar] [CrossRef]
- Reda, M.; El-Dek, S.I.; Arman, M.M. Improvement of ferroelectric properties via Zr doping in barium titanate nanoparticles. J. Mater. Sci. Mater. Electron. 2022, 33, 16753–16776. [Google Scholar] [CrossRef]
- Purnamasari, I.; Triyono, D. Effect of zirconium substitution on structural and optical properties of lanthanum orthoferrite. IOP Conf. Ser. Mater. Sci. Eng. 2020, 902, 012031. [Google Scholar] [CrossRef]
- Hashim, M.; Kumar, S.; Shirsath, S.E.; Kotnala, R.K.; Shah, J.; Kumar, R. Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite. Ceram. Int. 2013, 39, 1807–1819. [Google Scholar] [CrossRef]
- Dawood, M.S.; Elmosalami, T.; Desoky, W. Enhancement of elastic, optical and opto-electrical properties of Ni-Substituted CoFe2O4 nanoparticles with different concentrations. Opt. Mater. 2021, 117, 111101. [Google Scholar] [CrossRef]
- Chandekar, K.V.; Shkir, M.; AlFaify, S. A structural, elastic, mechanical, spectroscopic, thermodynamic, and magnetic properties of polymer coated CoFe2O4 nanostructures for various applications. J. Mol. Struct. 2020, 1205, 127681. [Google Scholar] [CrossRef]
- Babu, B.R.; Tatarchuk, T. Elastic properties and antistructural modeling for nickel-zinc ferrite-aluminates. Mater. Chem. Phys. 2018, 207, 534–541. [Google Scholar] [CrossRef]
- Manjunatha, K.; Jagadeesha Angadi, V.; Srinivasamurthy, K.M.; Matteppanavar, S.; Pattar, V.K.; Mahaboob Pasha, U. Exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-substituted CoCr2O4 nanoparticles. J. Supercond. Nov. Magn. 2020, 33, 1747–1757. [Google Scholar] [CrossRef]
- Patil, V.; Shirsath, S.E.; More, S.; Shukla, S.; Jadhav, K. Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloys Compd. 2009, 488, 199–203. [Google Scholar] [CrossRef]
- Debnath, S.; Das, R. Cobalt doping on nickel ferrite nanocrystals enhances the micro-structural and magnetic properties: Shows a correlation between them. J. Alloys Compd. 2021, 852, 156884. [Google Scholar] [CrossRef]
- Denton, A.R.; Ashcroft, N.W. Vegard’s law. Phys. Rev. A 1991, 43, 3161. [Google Scholar] [CrossRef]
- Safaan, S.; El Ata, A.A.; El Messeery, M. Study of some structural and magnetic properties of Mn-substituted SrCu hexagonal ferrites. J. Magn. Magn. Mater. 2006, 302, 362–367. [Google Scholar] [CrossRef]
- Akyol, M.; Adanur, I.; Ayaş, A.O.; Ekicibil, A. Magnetic field dependence of magnetic coupling in CoCr2O4 nanoparticles. Phys. B Condens. Matter 2017, 525, 144–148. [Google Scholar] [CrossRef]
- Islam, M.U.; Abbas, T.; Niazi, S.B.; Ahmad, Z.; Sabeen, S.; Chaudhry, M.A. Electrical behaviour of fine particle, co-precipitation prepared Ni–Zn ferrites. Solid State Commun. 2004, 130, 353–356. [Google Scholar] [CrossRef]
- Deraz, N.; Alarifi, A. Preparation and characterization of nano-magnetic Mn0.5Zn0.5Fe2O4 system. Int. J. Electrochem. Sci. 2012, 7, 5828–5836. [Google Scholar] [CrossRef]
- Choudhary, P.; Saxena, P.; Yadav, A.; Sinha, A.K.; Rai, V.N.; Varshney, M.D.; Mishra, A. Weak ferroelectricity and leakage current behavior of multiferroic CoCr2O4 nanomaterials. J. Supercond. Nov. Magn. 2019, 32, 2639–2645. [Google Scholar] [CrossRef]
- López-Ortega, A.; Lottini, E.; Fernández, C.D.J.; Sangregorio, C. Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 2015, 27, 4048–4056. [Google Scholar] [CrossRef]
- Nair, D.S.; Kurian, M. Highly selective synthesis of diphenyl methane via liquid phase benzylation of benzene over cobalt doped zinc nanoferrite catalysts at mild conditions. J. Saudi Chem. Soc. 2019, 23, 127–132. [Google Scholar] [CrossRef]
- El-Said Bakeer, D. Investigation on Optical, Dielectric, and Magnetic Properties of CoAl2−x FexO4 Nanoparticles. J. Supercond. Nov. Magn. 2020, 33, 1789–1801. [Google Scholar] [CrossRef]
- Rikamukti, N.; Purnama, B. Effect of doping Strontium ions in co-precipitated cobalt ferrite. J. Phys. Conf. Ser. 2017, 909, 012012. [Google Scholar] [CrossRef]
- Bitar, Z.; Isber, S.; Noureddine, S.; Bakeer, D.E.-S.; Awad, R. Synthesis, Characterization, Optical Properties, and Electron Paramagnetic Resonance for Nano Zn0.5Co0.5Fe2−xPrxO4. J. Supercond. Nov. Magn. 2017, 30, 3603–3609. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, W.; Hu, R.; Chang, G.; Li, C.; Wang, L. Catalytic activity of spinel oxides MgCr2O4 and CoCr2O4 for methane combustion. Mater. Res. Bull. 2014, 57, 268–273. [Google Scholar] [CrossRef]
- Choudhary, P.; Saxena, P.; Yadav, A.; Rai, V.N.; Mishra, A. Dielectric and ferroelectric properties of CoCr2O4 nanoceramics. J. Adv. Dielectr. 2019, 9, 1950015. [Google Scholar] [CrossRef]
- Khattab, R.; Sadek, H.; Gaber, A. Synthesis of CoxMg1−xAl2O4 nanospinel pigments by microwave combustion method. Ceram. Int. 2017, 43, 234–243. [Google Scholar] [CrossRef]
- Deepty, M.; Srinivas, C.; Kumar, E.R.; Mohan, N.K.; Prajapat, C.L.; Rao, T.C.; Meena, S.S.; Verma, A.K.; Sastry, D.L. XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram. Int. 2019, 45, 8037–8044. [Google Scholar] [CrossRef]
- El-Said Bakeer, D. Elastic study and optical dispersion characterization of Fe-substituted cobalt aluminate nanoparticles. Appl. Phys. A 2020, 126, 443. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Paliychuk, N.; Bououdina, M.; Al-Najar, B.; Pacia, M.; Macyk, W.; Shyichuk, A. Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 2018, 731, 1256–1266. [Google Scholar] [CrossRef]
- El-Ghazzawy, E.H.; Amer, M.A. Structural, elastic and magnetic studies of the as-synthesized Co1−xSrxFe2O4 nanoparticles. J. Alloys Compd. 2017, 690, 293–303. [Google Scholar] [CrossRef]
- Frantsevich, S.A.B.I.N.; Voronov, F.F.; Frant, I.N. Elastic Constants and Elastic Moduli of Metals and Insulators Handbook; Naukova Dumka: Kiev, Ukraine, 1983. [Google Scholar]
- Patange, S.; Shirsath, S.E.; Lohar, K.; Algude, S.; Kamble, S.; Kulkarni, N.; Mane, D.; Jadhav, K. Infrared spectral and elastic moduli study of NiFe2−xCrxO4 nanocrystalline ferrites. J. Magn. Magn. Mater. 2013, 325, 107–111. [Google Scholar] [CrossRef]
- Modi, K.B.; Gajera, J.D.; Pandya, M.P.; Vora, G.; Joshi, H.H. Far-infrared spectral studies of magnesium and aluminum co-substituted lithium ferrites. Pramana 2004, 62, 1173–1180. [Google Scholar] [CrossRef]
- Patange, S.; Shirsath, S.E.; Jadhav, S.; Hogade, V.; Kamble, S.; Jadhav, K. Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J. Mol. Struct. 2013, 1038, 40–44. [Google Scholar] [CrossRef]
- Waldron, R.D. Infrared spectra of ferrites. Phys. Rev. B 1955, 99, 1727–1735. [Google Scholar] [CrossRef]
- Anderson, O.L.; Mason, W.P. (Eds.) Physics Acoustics; Academic Press: New York, NY, USA, 1965; Volume 3BC. [Google Scholar]
- Amir; Gungunes, H.; Slimani, Y.; Tashkandi, N.; El Sayed, H.S.; Aldakheel, F.; Sertkol, M.; Sozeri, H.; Manikandan, A.; Ercan, I.; et al. Mössbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Nov. Magn. 2019, 32, 557–564. [Google Scholar] [CrossRef]
- Almessiere, M.; Slimani, Y.; Sertkol, M.; Nawaz, M.; Baykal, A.; Ercan, I. The impact of Zr substituted Sr hexaferrite: Investigation on structure, optic and magnetic properties. Results Phys. 2019, 13, 102244. [Google Scholar] [CrossRef]
- Arora, M.; Chauhan, S.; Sati, P.C.; Kumar, M. Effect of non-magnetic ions substitution on structural, magnetic and optical properties of BiFeO3 nanoparticles. J. Supercond. Nov. Magn. 2014, 27, 1867–1871. [Google Scholar] [CrossRef]
- Culity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
Zr4+ Content, x | (Å) | (Å) | (g/cm3) | (g/cm3) | P% | Hopping Lengths | Scherrer Equation | W-H Method | TEM | ||
---|---|---|---|---|---|---|---|---|---|---|---|
(Å) | (Å) | D (nm) | D (nm) | × 10−3 | L (nm) | ||||||
0.00 | 8.311 | 8.781 | 5.251 | 4.218 | 19.672 | 3.598 | 2.938 | 18.500 | 22.01 | 1.30 | 16.998 |
0.05 | 8.314 | 8.788 | 5.291 | 4.299 | 18.740 | 3.600 | 2.939 | 14.999 | 20.42 | 3.14 | 11.172 |
0.10 | 8.318 | 8.795 | 5.328 | 4.357 | 18.224 | 3.602 | 2.941 | 14.294 | 19.53 | 3.21 | 9.346 |
0.15 | 8.319 | 8.806 | 5.372 | 4.488 | 16.462 | 3.602 | 2.941 | 11.179 | 17.03 | 3.32 | 7.073 |
0.20 | 8.320 | 8.810 | 5.415 | 4.649 | 14.151 | 3.603 | 2.942 | 9.265 | 11.91 | 7.71 | 6.120 |
x | ν1 (cm−1) | ν2 (cm−1) | (dyne/cm) | (dyne/cm) | GPa | GPa | |
---|---|---|---|---|---|---|---|
0.00 | 629.66 | 523.08 | 2.837 | 1.958 | 288.538 | 103.298 | 0.2636 |
0.05 | 626.56 | 522.79 | 2.809 | 1.956 | 286.627 | 102.844 | 0.2641 |
0.10 | 625.47 | 521.57 | 2.800 | 1.947 | 285.3545 | 103.320 | 0.2658 |
0.15 | 624.81 | 519.64 | 2.794 | 1.932 | 284.101 | 102.874 | 0.2659 |
0.20 | 623.74 | 517.92 | 2.784 | 1.919 | 282.724 | 102.775 | 0.2666 |
x | (emu/g) | × 10−2 (emu/g) | (G) | |
---|---|---|---|---|
0.00 | 0.520 | 1.36 | 362.07 | 0.0209 |
0.05 | 0.515 | 1.10 | 278.92 | 0.0211 |
0.10 | 0.506 | 0.82 | 213.25 | 0.0209 |
0.15 | 0.466 | 0.85 | 1209.2 | 0.0194 |
0.20 | 0.432 | 0.93 | 1357.1 | 0.0181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, M.M.E.; El-Said Bakeer, D. Investigation of Structural, Elastic and Magnetic Properties of CoCr2−xZrxO4 Nanoparticles. Materials 2024, 17, 5149. https://doi.org/10.3390/ma17215149
Barakat MME, El-Said Bakeer D. Investigation of Structural, Elastic and Magnetic Properties of CoCr2−xZrxO4 Nanoparticles. Materials. 2024; 17(21):5149. https://doi.org/10.3390/ma17215149
Chicago/Turabian StyleBarakat, Mai M. E., and Doaa El-Said Bakeer. 2024. "Investigation of Structural, Elastic and Magnetic Properties of CoCr2−xZrxO4 Nanoparticles" Materials 17, no. 21: 5149. https://doi.org/10.3390/ma17215149
APA StyleBarakat, M. M. E., & El-Said Bakeer, D. (2024). Investigation of Structural, Elastic and Magnetic Properties of CoCr2−xZrxO4 Nanoparticles. Materials, 17(21), 5149. https://doi.org/10.3390/ma17215149