A-C/Au Film with Low Humidity Sensitivity of Friction by Forming Au Transfer Film
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajak, D.K.; Kumar, A.; Behera, A.; Menezes, P.L. Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications. Appl. Sci. 2021, 11, 4445. [Google Scholar] [CrossRef]
- Ohtake, N.; Hiratsuka, M.; Kanda, K.; Akasaka, H.; Tsujioka, M.; Hirakuri, K.; Hirata, A.; Ohana, T.; Inaba, H.; Kano, M.; et al. Properties and Classification of Diamond-Like Carbon Films. Materials 2021, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.X.; Li, H.X.; Ji, L.; Zhou, H.D.; Chen, J.M. Tribochemistry of superlubricating amorphous carbon films. Chem. Commun. 2021, 57, 11776–11786. [Google Scholar] [CrossRef] [PubMed]
- Ilberg, L.; Manis-Levy, H.; Raveh, A.; Lifshitz, Y.; Varenberg, M. Effect of structure of carbon films on their tribological properties. Diam. Relat. Mater. 2013, 38, 79–86. [Google Scholar] [CrossRef]
- Ronkainen, H.; Holmberg, K. Environmental and Thermal Effects on the Tribological Performance of DLC Coatings. In Tribology of Diamond-Like Carbon Films; Donnet, C., Erdemir, A., Eds.; Springer: Boston, MA, USA, 2008; pp. 155–200. [Google Scholar]
- Donnet, C.; Le Mogne, T.; Ponsonnet, L.; Belin, M.; Grill, A.; Patel, V.V.; Jahnes, C.V. The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings. Tribol. Lett. 1998, 4, 259–265. [Google Scholar] [CrossRef]
- Andersson, J.; Erck, R.A.; Erdemir, A. Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Tech. 2003, 163–164, 535–540. [Google Scholar] [CrossRef]
- Li, H.X.; Xu, T.; Wang, C.B.; Chen, J.M.; Zhou, H.D.; Liu, H.W. Friction behaviors of hydrogenated diamond-like carbon film in different environment sliding against steel ball. Appl. Surf. Sci. 2005, 249, 257–265. [Google Scholar] [CrossRef]
- Wang, J.J.; Cao, X.Q.; Zhang, G.G.; Lu, Z.B.; Xue, Q.J. The degradation of humidity sensitivity of friction for tetrahedral amorphous carbon film by spin-coating hexagonal boron nitride. Appl. Surf. Sci. 2020, 509, 145343. [Google Scholar] [CrossRef]
- Wang, J.Y.; Xing, Z.Y.; Gao, K.X.; Yang, P.F.; Xu, C.L.; Wang, X.; Lin, Z. Tribology dependence on both structures of bulk a-C:H:Si films and transfer layer via adjustable Si content. Diam. Relat. Mater. 2023, 138, 110159. [Google Scholar] [CrossRef]
- Chen, X.C.; Yin, X.; Qi, W.; Zhang, C.H.; Choi, J.; Wu, S.D.; Wang, R.; Luo, J.B. Atomic-scale insights into the interfacial instability of superlubricity in hydrogenated amorphous carbon films. Sci. Adv. 2020, 6, 1272. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, L.; Xue, Q. Achieving Low Tribological Moisture Sensitivity by a-C:Si:Al Carbon-based Coating. Tribol. Lett. 2011, 43, 329–339. [Google Scholar] [CrossRef]
- Chen, T.; Wu, X.; Ge, Z.; Ruan, J.; Lv, B.; Zhang, J. Achieving low friction and wear under various humidity conditions by co-doping nitrogen and silicon into diamond-like carbon films. Thin Solid Films 2017, 638, 375–382. [Google Scholar] [CrossRef]
- Pei, L.L.; Chen, W.Q.; Ju, P.F.; Zhou, H.; Xu, Z.; Ji, L.; Ma, T.B.; Li, H.X.; Liu, X.H.; Zhou, H.D.; et al. Regulating Vacuum Tribological Behavior of a-C:H Film by Interfacial Activity. J. Phys. Chem. Lett. 2021, 12, 10333–10338. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.L.; Zhang, J.; Ji, L.; Ma, T.B.; Li, H.X.; Liu, X.H.; Zhou, H.D.; Chen, J.M. A novel strategy for improving tribological properties of a-C films in vacuum by Au doping and self-migration. Tribol. Int. 2024, 193, 109345. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Lee, W.Y.; Tokoroyama, T.; Umehara, N. Superlubricity with Graphitization in Ti-Doped DLC/Steel Tribopair: Response on Humidity and Temperature. ACS Appl. Mater. Interfaces 2023, 15, 19715–19729. [Google Scholar] [CrossRef] [PubMed]
- Scharf, T.W.; Prasad, S.V. Solid lubricants: A review. J. Mater. Sci. 2013, 48, 511–531. [Google Scholar] [CrossRef]
- Song, H.; Ji, L.; Li, H.X.; Liu, X.H.; Wang, W.Q.; Zhou, H.D.; Chen, J.M. External-Field-Induced Growth Effect of an a-C:H Film for Manipulating Its Medium-Range Nanostructures and Properties. ACS Appl. Mater. Interfaces 2016, 8, 6639–6645. [Google Scholar] [CrossRef]
- Gong, Z.B.; Shi, J.; Zhang, B.; Zhang, J.Y. Graphene nano scrolls responding to superlow friction of amorphous carbon. Carbon 2017, 116, 310–317. [Google Scholar] [CrossRef]
Film Type | Deposition Pressure (Pa) | Source Gas | The Atomic Content of Au in the Film (at.%) | Film Thickness (μm) | Hardness (GPa) | Elasticity Modulus (GPa) | Surface Roughness (nm) |
---|---|---|---|---|---|---|---|
a-C:H | 0.64 | Ar:CH4 = 45:65 | 0 | 1.8 | 10.00 | 79.51 | 4.80 |
a-C/Au | 0.5 | Only Ar | 16 | 1.18 | 5.55 | 96.84 | 6.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L.; Ji, L.; Li, H.; Cai, H.; Xue, Y. A-C/Au Film with Low Humidity Sensitivity of Friction by Forming Au Transfer Film. Materials 2024, 17, 4941. https://doi.org/10.3390/ma17204941
Pei L, Ji L, Li H, Cai H, Xue Y. A-C/Au Film with Low Humidity Sensitivity of Friction by Forming Au Transfer Film. Materials. 2024; 17(20):4941. https://doi.org/10.3390/ma17204941
Chicago/Turabian StylePei, Lulu, Li Ji, Hongxuan Li, Haichao Cai, and Yujun Xue. 2024. "A-C/Au Film with Low Humidity Sensitivity of Friction by Forming Au Transfer Film" Materials 17, no. 20: 4941. https://doi.org/10.3390/ma17204941
APA StylePei, L., Ji, L., Li, H., Cai, H., & Xue, Y. (2024). A-C/Au Film with Low Humidity Sensitivity of Friction by Forming Au Transfer Film. Materials, 17(20), 4941. https://doi.org/10.3390/ma17204941