Effect of Laser Parameters on Fracture Properties of Laser-Repaired Cracks with Micro/NanoMaterial Addition: Multiscale Analysis
Abstract
:1. Introduction
2. Experiment and Models
2.1. Experiment and Materials
- (1)
- Select laser heating time t as 1.0 s and laser power P as 1600 W, 1800 W, and 2000 W, respectively.
- (2)
- Select laser power P as 1800 W and laser heating time t as 0.5 s, 1.0 s, and 2.0 s, respectively.
2.2. Trans-Scale Calculation Model
3. Results
3.1. Experimental Results
3.2. Numerical Study on the Influence of Grain Size on Repair Quality
3.3. Formatting of Mathematical Components
3.4. Macro-Scale Analysis
4. Discussion of Calculation and Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, P.; Lin, C.X.; Zhou, C.Y.; Yi, X.P. Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings. Surf. Coat. Technol. 2014, 238, 9–14. [Google Scholar] [CrossRef]
- Amado, J.M.; Tobar, M.J.; Yáñez, A.; Amigó, V.; Candel, J.J. Crack free tungsten carbide reinforced Ni(Cr) layers obtained by laser cladding. Phys. Procedia 2011, 12, 338–344. [Google Scholar] [CrossRef]
- Wang, W.F.; Wang, M.C.; Jie, Z.; Sun, F.J.; Huang, D.W. Research on the microstructure and wear resistance of titanium alloy structural members repaired by laser cladding. Opt. Laser Eng. 2008, 46, 810–816. [Google Scholar] [CrossRef]
- Cha, D.; Diaz, O.G.; Liao, Z.; Gilbert, D.; Axinte, D.; Kell, J.; Norton, A.; O’Key, M.; Osborne, M.R.; Main, D. Development of a novel system for in-situ repair of aeroengine airfoil via pulsed laser ablation. J. Manuf. Syst. 2020, 55, 126–131. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.T.; Bai, Q. Defect formation mechanisms in selective laser melting: A review. Chin. J. Mech. Eng. 2017, 30, 1476. [Google Scholar] [CrossRef]
- Yang, T.; Liu, T.T.; Liao, W.H.; MacDonald, E.; Wei, H.L.; Zhang, C.D.; Chen, X.Y.; Zhang, K. Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties. J. Alloy Compd. 2020, 849, 156300. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.; King, Y.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2020, 196, 30. [Google Scholar] [CrossRef]
- Han, X.H.; Yang, Z.B.; Ma, Y.; Shi, C.Y.; Xin, Z.B. Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint. Opt. Laser Technol. 2020, 132, 106511. [Google Scholar] [CrossRef]
- Pekok, M.A.; Setchi, R.; Ryan, M.; Han, Q.Q.; Gu, D.D. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int. J. Adv. Manuf. Technol. 2021, 112, 175–192. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.D.; Bieler, T.R.; Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2010, 58, 1152–1211. [Google Scholar] [CrossRef]
- Guo, X.R.; Mao, N.D.; Kong, T.Q.; Zhang, J.; Shen, J.J.; Wang, C.H.; Sun, C.Y.; Li, P.P.; Xiong, Z.P. Strain rate-dependent plastic behavior of TWIP steel investigated by crystal plasticity model. Mat. Sci. Eng. A 2024, 891, 145986. [Google Scholar] [CrossRef]
- Liang, J.B.; Jiao, L.; Yan, P.; Song, Y.F.; Li, S.Y.; Dai, Z.C.; Wang, X.B. A crystal plastic finite element model for the effect of surface integrity on multiaxial fatigue life after multistage machining processes. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 964–985. [Google Scholar] [CrossRef]
- Skamniotis, C.; Grilli, N.; Cocks, A.C.F. Crystal plasticity analysis of fatigue-creep behavior at cooling holes in single crystal Nickel based gas turbine blade components. Int. J. Plasticity 2023, 166, 103589. [Google Scholar] [CrossRef]
- Wang, H.; Lu, C.; Tieu, K. A crystal plasticity FEM investigation of a Cu single crystal processed by accumulative roll-bonding. J. Mater. Res. Technol. 2019, 8, 5057–5065. [Google Scholar] [CrossRef]
- Zhao, J.W.; Jiang, Z.Y.; Wang, Z.H.; Sang, S.B.; Dobrzanski, L.A.; Yang, M.; Ma, X.G.; Wang, Y.Z. An analysis of micro deep drawing of ferritic stainless steel 430 using crystal plasticity finite element method. J. Mater. Res. Technol. 2022, 20, 2247–2261. [Google Scholar] [CrossRef]
- Wang, Z.F.; Jiang, B.B.; Wu, S.L.; Liu, W.L. Anisotropic tension-compression asymmetry in SLM 316L stainless steel. Int. J. Mech. Sci. 2023, 246, 108139. [Google Scholar] [CrossRef]
- Zhang, W.J.; Hu, Y.Y.; Ma, X.F.; Qian, G.A.; Zhang, J.M.; Yang, Z.M.; Berto, F. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling. Int. J. Fatigue 2021, 145, 106109. [Google Scholar] [CrossRef]
- Kirane, K.; Ghosh, S. A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE Model. Int. J. Fatigue 2008, 30, 2127–2139. [Google Scholar] [CrossRef]
- He, Z.; Qiu, W.; Fan, Y.N.; Han, Q.N.; Shi, H.J.; Ma, X. Effects of secondary orientation on fatigue crack initiation in a single crystal superalloy. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 935–948. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.Y.; Fang, G.L.; Guo, F.L. Effect of laser parameters on microstructure and fracture properties of repaired cracks with micro/nano material addition. J. Manuf. Sci. Eng. 2020, 142, 054501. [Google Scholar] [CrossRef]
- Li, Y.Y.; Jiang, W. Multiscale finite element based trans-scale calculation method for polycrystalline materials. Mater. Res. Express 2019, 6, 036507. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.Y. Multiscale analysis of microstructural effects on the fracture properties of laser repaired cracks with micro/nano composite material addition. Theor. Appl. Fract. Mech. 2023, 125, 103914. [Google Scholar] [CrossRef]
- ASTM E647-24; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2024.
- Jiang, W.; Jiang, X.F. Laser repair with addition of nano-WC on microstructure and fracture behavior of 304 stainless steel. J. Eng. Mater. Technol. 2017, 139, 041002. [Google Scholar] [CrossRef]
- Aghababaei, R.; Joshi, S.P. Grain size-inclusion size interaction in metal matrix composites using mechanism-based gradient crystal plasticity. Int. J. Solids Struct. 2011, 48, 2585–2594. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. Mater. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Yao, W.Z.; Krill, C.E.; Albinski, B.; Schneider, H.C.; You, J.H. Plastic material parameters and plastic anisotropy of tungsten single crystal: A spherical micro-indentation study. J. Mater. Sci. 2014, 49, 3705–3715. [Google Scholar] [CrossRef]
- Hastie, J.C.; Kartal, M.E.; Carter, L.N.; Attallah, M.M.; Mulvihill, D.M. Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: Influence of processing parameters and heat treatment. Mater. Charact. 2020, 163, 110225. [Google Scholar] [CrossRef]
- Phan, V.T.; Nguyen, T.D.; Bui, Q.H.; Dirras, G. Modelling of microstructural effects on the mechanical behavior of ultrafine-grained Nickel using crystal plasticity finite element model. Int. J. Eng. Sci. 2015, 94, 212–225. [Google Scholar] [CrossRef]
- Weng, G.J. A micromechanical theory of grain-size dependence in metal plasticity. J. Mech. Phys. Solids 1983, 31, 193–203. [Google Scholar] [CrossRef]
- Odnobokova, M.; Belyakov, A.; Kaibyshev, R. Development of nanocrystalline 304L stainless steel by large strain cold working. Metals 2015, 5, 656–668. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Baxevanakis, K.P.; Zhao, L.G.; Bullough, C. Modelling short crack propagation in a single crystal nickel-based superalloy using crystal plasticity and XFEM. Int. J. Fatigue 2020, 136, 105594. [Google Scholar] [CrossRef]
464.40 MPa | 191.08 MPa | 78.86 MPa |
Specimen | A | B | C | D | E |
---|---|---|---|---|---|
P-D-T (W-mm-s) | 1600-3-1 | 1800-3-1 | 2000-3-1 | 1800-3-0.5 | 1800-3-2 |
Grain size (μm) | 7.42 | 7.93 | 9.33 | 5.27 | 8.65 |
Porosity (%) | 1.50 | 0.50 | 1.76 | 0.44 | 0.63 |
Grain Size (μm) | 5 | 5.27 | 7.42 | 7.93 | 8.65 | 9.33 | 15 | 25 |
---|---|---|---|---|---|---|---|---|
(MPa) | 287.33 | 284.55 | 268.11 | 265.23 | 261.60 | 258.57 | 241.97 | 228.00 |
(MPa) | 100.25 | 99.17 | 94.08 | 92.59 | 91.82 | 90.51 | 84.65 | 78.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Jiang, W.; Li, M. Effect of Laser Parameters on Fracture Properties of Laser-Repaired Cracks with Micro/NanoMaterial Addition: Multiscale Analysis. Materials 2024, 17, 4656. https://doi.org/10.3390/ma17184656
Li Y, Jiang W, Li M. Effect of Laser Parameters on Fracture Properties of Laser-Repaired Cracks with Micro/NanoMaterial Addition: Multiscale Analysis. Materials. 2024; 17(18):4656. https://doi.org/10.3390/ma17184656
Chicago/Turabian StyleLi, Yinyin, Wei Jiang, and Meiqiu Li. 2024. "Effect of Laser Parameters on Fracture Properties of Laser-Repaired Cracks with Micro/NanoMaterial Addition: Multiscale Analysis" Materials 17, no. 18: 4656. https://doi.org/10.3390/ma17184656
APA StyleLi, Y., Jiang, W., & Li, M. (2024). Effect of Laser Parameters on Fracture Properties of Laser-Repaired Cracks with Micro/NanoMaterial Addition: Multiscale Analysis. Materials, 17(18), 4656. https://doi.org/10.3390/ma17184656