Improving the Early Age Strength of Eco-Efficient Mortar with Low Clinker Content Considering Binder Granulometry and Chemical Additives
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Mortars
2.2. Methods
3. Results and Discussion
3.1. Early Age Stiffness Development
3.1.1. Effect of Slag Fineness
3.1.2. Effect of C-S-H Seeding
3.2. Compressive Strength
3.2.1. Effect of Slag Fineness
3.2.2. Effect of C-S-H Seeding
3.3. Sustainability Assessment and Ecological Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Portland Cement Association (PCA). Development of Alternative Fuels in the U.S. Cement Industry. Cement Lime Gypsum 1-2; Portland Cement Association (PCA): Washington, DC, USA, 2019; pp. 34–37. [Google Scholar]
- Müller, C. Concepts for resource-efficient concretes using the example of cement. Cem. Int. 2019, 19, 56–61. [Google Scholar]
- Black, L. Low Clinker Cement as a Sustainable Construction Material. In Sustainability of Construction Materials; Woodhead Publishing: Cambridge, UK, 2016; pp. 415–457. [Google Scholar]
- Paul, M.; Sievert, T.; Canonico, F. Possibilities to reduce CO2 emissions with efficient binders. In Proceedings of the ILCCC—1st International Conference on Innovation in Low-Carbon Cement & Concrete Technology, London, UK, 17–19 September 2019. [Google Scholar]
- Hanein, T.; Galves-Martos, J.L.; Bannerman, M.N. Carbon footprint of calcium sulfoaluminate clinker. J. Clean. Prod. 2018, 172, 2278–2287. [Google Scholar] [CrossRef]
- Stemmermann, P.; Ulrich, A.; Beuchle, G.; Garbev, K.; Schweike, U. Belite cement clinker from autoclaved aerated concrete waste—A contribution towards CO2-reduced circular building materials. CE/Papers 2022, 5, 17–26. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Sui, S.; Georget, F.; Maraghechi, H.; Sun, W.; Scrivener, K. Towards a generic approach to durability: Factors affecting chloride transport in binary and ternary cementitious materials. Cem. Concr. Res. 2019, 124, 105783. [Google Scholar] [CrossRef]
- Schack, T.; Strybny, B.; Deiters, M.; Haist, M. Concrete with clinker-efficient cements—Robustness to variations in water content and temperature. CE/Papers 2023, 6, 163–171. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary Cementitious Materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Scrivener, K.; Mohsen, B.H.; Juilland, P.; Levy, C. Research needs for cementitious building materials with focus on Europe. RILEM Tech. Lett. 2023, 7, 220–252. [Google Scholar] [CrossRef]
- Stindt, J.; Forman, P.; Mark, P. Influence of Rapid Heat Treatment on the Shrinkage and Strength of High-Performance Concrete. Materials 2021, 14, 4102. [Google Scholar] [CrossRef]
- Adu-Amankwah, S.; Bernal, S.A.; Black, L. Influence of component fineness on hydration and strength development in ternary slag-limestone cements. RILEM Tech. Lett. 2019, 4, 81–88. [Google Scholar] [CrossRef]
- Berodier, E.; Scrivener, K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H. J. Am. Soc. 2014, 97, 3764–3773. [Google Scholar] [CrossRef]
- Birki, Y.; Zajac, M.; Mohsen, B.H.; Scrivener, K. Impact of limestone fineness on cement hydration at early age. Cem. Concr. Res. 2021, 147, 106515. [Google Scholar] [CrossRef]
- John, E.; Matschei, T.; Stephan, D. Nucleation seeding with calcium silicate hydrate—A review. Cem. Concr. Res. 2018, 113, 74–85. [Google Scholar] [CrossRef]
- Deutscher Ausschuss für Stahlbeton. Wärmebehandlung von Beton; Beuth Verlag: Berlin, Germany, 2012. [Google Scholar]
- ACI 517.2R-80; Accelerated Curing of Concrete at Atmospheric Pressure State of the Art. ACI (American Concrete Institute): Farmington Hills, MI, USA, 1980.
- Pavoine, A.; Divet, L.; Fenouillet, S. A concrete performance test for delayed ettringite formation: Part I optimisation. Cem. Concr. Res. 2006, 36, 2138–2143. [Google Scholar] [CrossRef]
- Hallet, V.; De Belie, N.; Pontikes, Y. The impact of slag fineness on the reactivity of blended cements with high-volume non-ferrous metallurgy slag. Constr. Build. Mater. 2020, 257, 119400. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z. Effect of fineness on the pozzolanic reaction kinetics of slag in composite binders: Experiment and modelling. Constr. Build. Mater. 2020, 273, 121695. [Google Scholar] [CrossRef]
- Öner, M.; Erdoğdu, K.; Günlü, A. Effect of components fineness on strength of blast furnace slag cement. Cem. Concr. Res. 2003, 33, 463–469. [Google Scholar] [CrossRef]
- Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M. Effects of cement particle size distribution on performance properties of Portland cement-based materials. Cem. Concr. Res. 1999, 29, 1663–1671. [Google Scholar] [CrossRef]
- European Cement Research Academy. TR-ECRA-106/2009 ECRA CCS Project—Report about Phase II; European Cement Research Academy: Düsseldorf, Germany, 2009. [Google Scholar]
- Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Zajac, M.; Rossberg, A.; Le Saout, G.; Lothenbach, B. Influence of limestone and anhydrite on the hydration of Portland cements. Cem. Concr. Compos. 2014, 46, 99–108. [Google Scholar] [CrossRef]
- European Cement Research Academy. Development of State of the Art Techniques in Cement Manufacturing: Trying to Look Ahead; CSI/ECRA-Technology Paper 2017; European Cement Research Academy: Dusseldorf, Germany, 2017. [Google Scholar]
- Zajac, M.; Bolte, G.; Skocek, J.; Mohsen, B.H. Modelling the effect of the cement components fineness on performance and environmental impact of composite cements. Constr. Build. Mater. 2021, 276, 122108. [Google Scholar] [CrossRef]
- Schack, T.; Haist, M. Performance assessment of eco-efficient concrete with ternary blended cementitious materials considering the effect of binder component fineness. Case Stud. Constr. Mater. 2024, 20, e03154. [Google Scholar] [CrossRef]
- Bräu, M.; Ma-Hock, L.; Hesse, C.; Nicoleau, L.; Strauss, V.; Treumann, S.; Wiench, K.; Landsiedel, R.; Wohlleben, W. Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: A combined assessment of benefits and risks. Arch. Toxicol. 2012, 86, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, H.C.; Reales, O.M.; Reis, V.D.; Paiva, M.D.D.; Fairbairn, E.M.R. Hydration of Portland cement accelerated by C-S-H seeds at different temperatures. Cem. Concr. Res. 2020, 129, 105978. [Google Scholar] [CrossRef]
- Morales-Cantero, A.; Cuesta, A.; De la Torre, A.G.; Santacruz, I.; Mazanec, O.; Borralleras, P.; Weldert, K.S.; Gastaldi, D.; Canonico, F.; Aranda, M.A.G. C-S-H seeding activation of Portland and belite cements: An enlightening in situ synchrotron powder diffraction study. Cem. Concr. Res. 2022, 161, 106946. [Google Scholar] [CrossRef]
- John, E.; Epping, J.D.; Stephan, D. The influence of the chemical and physical properties of C-S-H seeds on their potential to accelerate cement hydration. Constr. Build. Mater. 2019, 228, 116723. [Google Scholar] [CrossRef]
- Li, X.; Bizzozero, J.; Hesse, C. Impact of C-S-H seeding on the hydration of slag blended cement. Cem. Concr. Res. 2022, 161, 106935. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Scherb, S.; Köberl, M.; Thienel, K.-C. Acceleration of cement blended with calcined clays. Constr. Build. Mater. 2020, 245, 118439. [Google Scholar] [CrossRef]
- Ferrari, G.; Brocchi, A.; Castiglioni, F.; Bravo, A.; Moretti, E.; Salvioni, D.; Squinzi, M.; Artioli, G.; Dalconi, M.C.; Valentini, L.; et al. A new multifunctional additive for blended cements. Constrion. Build. Mater. 2022, 354, 129086. [Google Scholar] [CrossRef]
- Li, X.; Dengler, J.; Heese, C. Reducing clinker factor in limestone calcined clay-slag cement using C-S-H—A way towards sustainable binder. Cem. Concr. Res. 2023, 168, 107151. [Google Scholar] [CrossRef]
- Stark, J.; Wicht, B. Zement und Kalk: Der Baustoff als Werkstoff; Springer: Basel, Switzerland, 2000. [Google Scholar]
- Alizadeh, R.; Raki, L.; Makar, J.M.; Beaudoin, J.J.; Moudrakovski, I. Hydration of Tricalcium374 Silicate in the Presence of synthetic Calcium–Silicate–Hydrate. J. Mater. Chem. 2009, 19, 7937. [Google Scholar] [CrossRef]
- Thomas, J.J.; Jennings, H.M.; Chen, J.J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J. Phys. Chem. C 2009, 113, 4327–4334. [Google Scholar] [CrossRef]
- DIN EN 197-1:2011-11; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. Beuth: Berlin, Germany, 2011.
- Dyckerhoff GmbH (Ed.) Dyckerhoff Mikrodur® … vom Feinsten; Dyckerhoff GmbH, Product Marketing: Wiesbaden, Germany, 2023. [Google Scholar]
- DIN EN 196-2:2013-10; Method of Testing Cement—Part 2: Chemical Analysis of Cement. Beuth: Berlin, Germany, 2010.
- Pott, U.; Crasselt, C.; Fobbe, N.; Haist, M.; Heinemann, M.; Hellmann, S.; Ivanov, D.; Jakob, C.; Jansen, D.; Lei, L.; et al. Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum—Rheology of reactive, multiscale, multiphase construction materials”. Data Brief 2023, 47, 108902. [Google Scholar] [CrossRef]
- DIN EN 197-5:2021-07; Cement—Part 5: Portland-Composite Cement CEM II/C-M and Composite Cement CEM VI. Beuth: Berlin, Germany, 2021.
- Master Builders Solutions GmbH Master X-SEED Declaration of Performance. Available online: https://master-builders-solutions.com/de-ch/produkte/master-x-seed/masterx-seed-100/ (accessed on 30 August 2024).
- DIN EN 1015-3: 2007-05; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). Beuth: Berlin, Germany, 2007.
- DIN EN 1015-6: 2007-05; Methods of Test for Mortar for Masonry—Part 6: Determination of Bulk Density of Fresh Mortar. Beuth: Berlin, Germany, 2007.
- DIN EN 196-1: 2016-11; Methods of Testing Cement—Part 1: Determination of Strength. Beuth: Berlin, Germany, 2016.
- Trtnik, G.; Gams, M. Recent advances of ultrasonic testing of cement based materials at early. Ultrasonics 2014, 54, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Trtnik, G.; Turk, G.; Kavcic, F.; Bosiljkov, V.B. Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste. Cem. Concr. Res. 2008, 38, 1336–1342. [Google Scholar] [CrossRef]
- Sun, Z.; Voigt, T.; Shah, S.P. Temperature Effects on Strength Evaluation of Cement-Based Materials with Ultrasonic Wave Reflection Technique. ACI Mater. J. 2005, 102, 272–278. [Google Scholar]
- DIN EN 15804: 2022-03; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. Beuth: Berlin, Germany, 2022.
- Haist, M.; Bergmeister, K.; Curbach, M.; Forman, P.; Gaganelis, G.; Gerlach, J.; Mark, P.; Moffatt, J.; Müller, C.; Müller, H.S.; et al. Nachhaltig konstruieren und bauen mit Beton. In Beton-Kalender 2022; Bergmeister, K., Fingerloos, F., Wörner, J.-D., Eds.; Ernst & Sohn: Berlin, Germany, 2022; pp. 421–531. [Google Scholar]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A.; Ventura, A. LCA allocation procedure used as an initiative method for waste recycling: An application to mineral additions in concrete. Resources. Conserv. Recycl. 2010, 54, 1231–1240. [Google Scholar] [CrossRef]
- Master Builders Solutions Deutschland GmbH. EDP HUB: Environmental Product Declaration Master X-Seed STE 54; Master Builders Solutions Deutschland GmbH: Mannheim, Germany, 2022. [Google Scholar]
- Icha, P.; Lauf, T. Entwicklung der Spezifischen Treibhausgas-Emissionen des Deutschen Strommix in den Jahren 1990–2022 CLIMATE CHANGE 20/2023; Umweltbundesamt: Dessau-Roßlau, Germany, 2023. [Google Scholar]
- Daminelli, B.L.; Kemeid, F.M.; Aguiar, P.S.; John, V.M. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 2010, 32, 555–562. [Google Scholar] [CrossRef]
- Ibrahim, H.; Wardeh, G.; Fares, H.; Ghorbel, E. Effectiveness of the Concrete Equivalent Mortar Method for the Prediction of Fresh and Hardened Properties of Concrete. Buildings 2024, 14, 1610. [Google Scholar] [CrossRef]
- Qadri, F.; Garg, N. Early-stage performance enhancement of concrete via commercial C-S-H seeds: From lab investigation to field implementation in Illinois, US. Case Stud. Constr. Mater. 2023, 19, e02353. [Google Scholar] [CrossRef]
Binder Component | Density | d10 | d50 | d90 | Specific Surface Area | Initial Setting Time | Water Demand | Compressive Strength (28 d) |
---|---|---|---|---|---|---|---|---|
(g/cm3) | (μm) | (μm) | (μm) | (cm2/g) | (min) | (Vol%) | (MPa) | |
CEM I 52.5 R | 3.106 | 1.1 | 8.6 | 27.4 | 5800 | 95 | 44.5 | 70.9 |
Mikrodur R-F slag | 3.122 | 0.8 | 5.2 | 12.4 | 7200 | - | 51.5 | 57.2 |
Mikrodur R-X slag | 2.902 | 0.7 | 2.6 | 5.3 | 10100 | - | 56.6 | 74.8 |
Blast furnace slag | 2.906 | 1.9 | 12.1 | 33.9 | 4400 | - | 47.3 | - |
Limestone powder 1 | 2.740 | 1.7 | 11.3 | 91.2 | 5100 | - | 32.4 | - |
Binder Component | CaO | SiO2 | Al2O3 | Fe2O3 | K2O | Na2O | SO3 | LOI |
---|---|---|---|---|---|---|---|---|
(wt%) | ||||||||
CEM I 52.5 R | 68.9 | 16.3 | 4.5 | 2.9 | 0.9 | 0.2 | 3.4 | 3.27 |
Mikrodur R-F slag | 41.4 | 28.6 | 10.3 | 0.5 | 0.8 | 0.2 | 2.3 | 1.06 |
Mikrodur R-X slag | 45.2 | 29.5 | 10.1 | 0.7 | 0.8 | 0.3 | 2.0 | 0.84 |
Blast furnace slag | 34.2 | 24.9 | 6.2 | 0.2 | 0.6 | 0.3 | 2.4 | 0.78 |
Limestone powder 1 | 52.7 | 2.5 | 0.6 | 0.4 | 0.1 | 0.02 | 0.3 | 41.81 |
Mix ID | Cement | Slag | Mikrodur R-F Slag | Mikrodur R-X Slag | Limestone | Water | Fine Aggregate (0/2) | w/c | w/b |
---|---|---|---|---|---|---|---|---|---|
[kg/m3] | [-] | ||||||||
CEM I 52.5 | 522 | - | - | - | - | 235 | 1511 | 0.45 | 0.45 |
C50-S30-LL20-R | 261 1 | 157 | - | - | 104 | 0.90 | 0.45 | ||
C50-S30-LL20-F | 242 1 | 1752 | - | 104 | 0.90 | 0.45 | |||
C50-S30-LL20-X | 242 1 | - | 175 2 | 104 | 0.90 | 0.45 | |||
C40-S30-LL30-R | 209 1 | 157 | - | - | 157 | 1.13 | 0.45 | ||
C40-S30-LL30-F | 190 1 | - | 1752 | - | 157 | 1.13 | 0.45 | ||
C40-S30-LL30-X | 190 1 | - | - | 175 2 | 157 | 1.13 | 0.45 | ||
C30-S30-LL40-R | 157 1 | 157 | - | - | 209 | 1.50 | 0.45 | ||
C30-S30-LL40-F | 138 1 | - | 1752 | - | 209 | 1.50 | 0.45 | ||
C30-S30-LL40-X | 138 1 | - | - | 175 2 | 209 | 1.50 | 0.45 | ||
C20-S30-LL50-R | 104 1 | 157 | - | - | 261 | 2.25 | 0.45 | ||
C20-S30-LL50-F | 86 1 | - | 1752 | - | 261 | 2.25 | 0.45 | ||
C20-S30-LL50-X | 86 1 | - | - | 175 2 | 261 | 2.25 | 0.45 |
Time | Step Description | Duration |
---|---|---|
[sec] | [cm2/g] | [sec] |
0–30 | Mixing all dry components—fine aggregate and binder | 30 |
31–60 | Addition of water including superplasticizer (C-S-H seeds in individual cases) | 30 |
61–300 | Mixing | 240 |
Mix ID | v180 | v360 | v720 | v1440 |
---|---|---|---|---|
[m/s] | ||||
C40-S30-LL30-R | 857 | 1363 | 1643 | 2155 |
C40-S30-LL30-F | 1173 | 1553 | 2000 | 2424 |
C40-S30-LL30-X | 1026 | 1539 | 2073 | 2649 |
C30-S30-LL40-R | 814 | 1349 | 1584 | 1926 |
C30-S30-LL40-F | 1389 | 1601 | 1869 | 2254 |
C30-S30-LL40-X | 1097 | 1555 | 2005 | 2477 |
C20-S30-LL50-R | 870 | 1388 | 1572 | 1686 |
C20-S30-LL50-F | 1245 | 1527 | 1691 | 1990 |
C20-S30-LL50-X | 1209 | 1566 | 1884 | 2286 |
Mix ID | v180 | v360 | v720 | v1440 |
---|---|---|---|---|
[m/s] | ||||
C40-S30-LL30-F | 1173 | 1553 | 2000 | 2424 |
C40-S30-LL30-F-1.5 | 1285 | 1606 | 2010 | 2477 |
C40-S30-LL30-F-3.0 | 1271 | 1629 | 2046 | 2519 |
C30-S30-LL40-F | 1387 | 1600 | 1869 | 2254 |
C30-S30-LL40-F-1.5 | 1377 | 1619 | 1923 | 2339 |
C30-S30-LL40-F-3.0 | 1400 | 1650 | 2025 | 2402 |
Clinker Content | Slag Fineness | 0.0 | 1.5 | 3.0 | 4.0 | 5.0 |
---|---|---|---|---|---|---|
[-] | ||||||
50 | S-F | 1.00 | 1.19 | 1.37 | 1.59 | n.d |
40 | S-F | 1.00 | 1.09 | n.d. | n.d. | n.d. |
30 | S-F | 1.00 | 1.09 | 1.29 | 1.68 | 2.03 |
20 | S-F | 1.00 | 1.07 | 1.24 | 1.24 | 1.23 |
50 | S-X | 1.00 | 1.09 | 1.18 | 1.42 | n.d. |
40 | S-X | 1.00 | 1.07 | n.d. | n.d. | n.d. |
30 | S-X | 1.00 | 1.16 | 1.27 | 1.47 | 1.54 |
20 | S-X | 1.00 | 1.12 | 1.27 | 1.25 | 1.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schack, T.; Strybny, B.; Haist, M. Improving the Early Age Strength of Eco-Efficient Mortar with Low Clinker Content Considering Binder Granulometry and Chemical Additives. Materials 2024, 17, 4509. https://doi.org/10.3390/ma17184509
Schack T, Strybny B, Haist M. Improving the Early Age Strength of Eco-Efficient Mortar with Low Clinker Content Considering Binder Granulometry and Chemical Additives. Materials. 2024; 17(18):4509. https://doi.org/10.3390/ma17184509
Chicago/Turabian StyleSchack, Tobias, Bastian Strybny, and Michael Haist. 2024. "Improving the Early Age Strength of Eco-Efficient Mortar with Low Clinker Content Considering Binder Granulometry and Chemical Additives" Materials 17, no. 18: 4509. https://doi.org/10.3390/ma17184509
APA StyleSchack, T., Strybny, B., & Haist, M. (2024). Improving the Early Age Strength of Eco-Efficient Mortar with Low Clinker Content Considering Binder Granulometry and Chemical Additives. Materials, 17(18), 4509. https://doi.org/10.3390/ma17184509