Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3
Abstract
:1. Introduction
2. Bismuthate Glasses and Nanomaterials
3. Materials and Methods
4. Results
4.1. X-ray Diffractometry—Pristine Glasses
4.2. Differential Thermal Analysis (DTA)
4.3. High-Temperature X-ray Diffractometry
4.4. Optimization of Crystallization Process
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DTA | Differential Thermal Analysis |
XRD | X-ray Diffractometry |
ICDD | International Centre for Diffraction Data |
ICSD | Inorganic Crystal Structure Database |
References
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef]
- Gupta, P.; Pushpakanth, S.; Haider, M.A.; Basu, S. Understanding the Design of Cathode Materials for Na-Ion Batteries. ACS Omega 2022, 7, 5605–5614. [Google Scholar] [CrossRef] [PubMed]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef] [PubMed]
- Sha, M.; Liu, L.; Zhao, H.; Lei, Y. Review on Recent Advances of Cathode Materials for Potassium-ion Batteries. Energy Environ. Mater. 2020, 3, 56–66. [Google Scholar] [CrossRef]
- Skinner, S.J.; Kilner, J.A. Oxygen ion conductors. Mater. Today 2003, 6, 30–37. [Google Scholar] [CrossRef]
- Kuwano, J. Silver ion conducting glasses and some applications. Solid State Ionics 1990, 40-41, 696–699. [Google Scholar] [CrossRef]
- Harwig, H.A. On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase. Z. Anorg. Und Allg. Chem. 1978, 444, 151–166. [Google Scholar] [CrossRef]
- Harwig, H.; Gerards, A. The polymorphism of bismuth sesquioxide. Thermochim. Acta 1979, 28, 121–131. [Google Scholar] [CrossRef]
- Ling, C.D.; Johnson, M. Modelling, refinement and analysis of the “Type III” δ-Bi2O3-related superstructure in the Bi2O3–Nb2O5 system. J. Solid State Chem. 2004, 177, 1838–1846. [Google Scholar] [CrossRef]
- Takahashi, T.; Iwahara, H. Oxide ion conductors based on bismuthsesquioxide. Mater. Res. Bull. 1978, 13, 1447–1453. [Google Scholar] [CrossRef]
- Jiang, N.; Wachsman, E.D. Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides. J. Am. Ceram. Soc. 1999, 82, 3057–3064. [Google Scholar] [CrossRef]
- Wachsman, E.D. Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides. J. Eur. Ceram. Soc. 2004, 24, 1281–1285. [Google Scholar] [CrossRef]
- Punn, R.; Feteira, A.M.; Sinclair, D.C.; Greaves, C. Enhanced Oxide Ion Conductivity in Stabilized δ-Bi2O3. J. Am. Chem. Soc. 2006, 128, 15386–15387. [Google Scholar] [CrossRef]
- Borowska-Centkowska, A.; Liu, X.; Holdynski, M.; Malys, M.; Hull, S.; Krok, F.; Wrobel, W.; Abrahams, I. Conductivity in lead substituted bismuth yttrate fluorites. Solid State Ionics 2014, 254, 59–64. [Google Scholar] [CrossRef]
- Switzer, J.A.; Shumsky, M.G.; Bohannan, E.W. Electrodeposited Ceramic Single Crystals. Science 1999, 284, 293–296. [Google Scholar] [CrossRef]
- Bohannan, E.W.; Jaynes, C.C.; Shumsky, M.G.; Barton, J.K.; Switzer, J.A. Low-temperature electrodeposition of the high-temperature cubic polymorph of bismuth(III) oxide. Solid State Ionics 2000, 131, 97–107. [Google Scholar] [CrossRef]
- Zhu, Y.; An, P.; Yu, M.; Marcelli, A.; Liu, Y.; Hu, T.; Xu, W. Structural phase transitions in ionic conductor Bi2O3 by temperature dependent XPD and XAS. J. Phys. Conf. Ser. 2016, 712, 012132. [Google Scholar] [CrossRef]
- Gomez, C.L.; Depablos-Rivera, O.; Medina, J.C.; Silva-Bermudez, P.; Muhl, S.; Zeinert, A.; Rodil, S.E. Stabilization of the delta-phase in Bi2O3 thin films. Solid State Ionics 2014, 255, 147–152. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Shinkuma, Y.; Minami, T. Stabilization of superionic α-Agl at room temperature in a glass matrix. Nature 1991, 354, 217–218. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Garbarczyk, J.E.; Wasiucionek, M. Stabilization of the δ-Bi2O3-like structure down to room temperature by thermal nanocrystallization of bismuth oxide-based glasses. Solid State Ionics 2018, 323, 78–84. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Jarocka, A.; Jastrzębski, C.; Płociński, T.; Wasiucionek, M.; Garbarczyk, J.E. Facile and reproducible method of stabilizing [Formula: See text] phases confined in nanocrystallites embedded in amorphous matrix. Sci. Rep. 2021, 11, 19145. [Google Scholar] [CrossRef] [PubMed]
- Maeder*, T. Review of Bi2O3based glasses for electronics and related applications. Int. Mater. Rev. 2013, 58, 3–40. [Google Scholar] [CrossRef]
- Komatsu, T.; Dimitrov, V.; Tasheva, T.; Honma, T. A review: A new insight for electronic polarizability and chemical bond strength in Bi2O3-based glasses. J. Non Cryst. Solids 2020, 550, 120365. [Google Scholar] [CrossRef]
- Baia, L.; Iliescu, T.; Simon, S.; Kiefer, W. Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses. J. Mol. Struct. 2001, 599, 9–13. [Google Scholar] [CrossRef]
- Jiang, X.; Su, L.; Guo, X.; Tang, H.; Fan, X.; Zhan, Y.; Wang, Q.; Zheng, L.; Li, H.; Xu, J. Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses. Opt. Lett. 2012, 37, 4260. [Google Scholar] [CrossRef] [PubMed]
- Kongsriprapan, S.; Teanchai, K.; Kirdsiri, K.; Kaewkhao, J.; Siriprom, W. Investigation some Properties of Bismuth Borate Glasses Containing Al2O3. Key Eng. Mater. 2016, 675–676, 347–350. [Google Scholar] [CrossRef]
- Gattow, G.; Schröder, H. Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)-oxid (δ-Bi2O3). Z. Anorg. Allg. Chem. 1962, 318, 176–189. [Google Scholar] [CrossRef]
- Sanz, O.; Haro-Poniatowski, E.; Gonzalo, J.; Fernández Navarro, J. Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J. Non-Cryst. Solids 2006, 352, 761–768. [Google Scholar] [CrossRef]
- Simon, S.; Todea, M. Spectroscopic study on iron doped silica-bismuthate glasses and glass ceramics. J. Non-Cryst. Solids 2006, 352, 2947–2951. [Google Scholar] [CrossRef]
- Todea, M.; Simon, S. Vibrational spectroscopic study on iron doped silica-bismuthate glasses and glass ceramics. J. Optoelectron. Adv. Mater. 2007, 9, 621–624. [Google Scholar]
- Todea, M.; Turcu, R.; Vasilescu, M.; Trandafir, D.; Simon, S. Structural characterization of heavy metal SiO2–Bi2O3 glasses and glass–ceramics. J. Non-Cryst. Solids 2016, 432, 271–276. [Google Scholar] [CrossRef]
- Ahlawat, N.; Sanghi, S.; Agarwal, A.; Bala, R. Influence of SiO2 on the structure and optical properties of lithium bismuth silicate glasses. J. Mol. Struct. 2010, 963, 82–86. [Google Scholar] [CrossRef]
- Schröder, F.; Bagdassarov, N.; Ritter, F.; Bayarjargal, L. Temperature dependence of Bi2O3 structural parameters close to the α–δ phase transition. Phase Transit. 2010, 83, 311–325. [Google Scholar] [CrossRef]
- Botta, W.; Ota, K.; Hajlaoui, K.; Vaughan, G.; Yavari, A. Glass transition, thermal expansion and relaxation in B2O3 glass measured by time-resolved X-ray diffraction. J. Non-Cryst. Solids 2008, 354, 325–327. [Google Scholar] [CrossRef]
- Goj, P.; Wajda, A.; Stoch, A.; Krakowiak, I.; Stoch, P. An Insight into the Correlation between Chemical Composition Changes of Aluminum-Iron-Polyphosphate Glasses and Thermal Properties. Materials 2021, 14, 2065. [Google Scholar] [CrossRef]
- Bermeshev, T.V.; Podshibyakina, E.Y.; Bundin, M.P.; Mazurova, E.V.; Samoilo, A.S.; Yasinskii, A.S.; Yushkova, O.V.; Voroshilov, D.S.; Bespalov, V.M.; Zaloga, A.N.; et al. Crystallization and Decomposition of Compounds with the Aurivillius Crystal Structure in the Bi2GeO5–Bi2SiO5 Pseudobinary Metastable System. Phys. Met. Metallogr. 2023, 124, 205–216. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
Sample ID | Nominal Composition | Synthesis Temperature |
---|---|---|
BAG | 1350 °C | |
BAS | 1100 °C | |
BBS | 1100 °C | |
BS | 1200 °C |
Sample ID | |||||
---|---|---|---|---|---|
BAG | 471 | 560 | 658 | 735 | - |
BAS | 499 | 625 | 718 | 760 | - |
BBS | 400 | 457 | 508 | 576 | 610 |
BS | 450 | 508 | 578 | 608 | - |
Sample | Temperature Range/°C | Identified Phase |
---|---|---|
BAG | <470 | glass |
470–490 | ||
490–550 | , | |
550–720 | ||
720–750 | , , | |
BAS | <510 | glass |
510–640 | ||
640–680 | , , | |
680–710 | , , UP | |
710–740 | , , , UP | |
740–750 | , , , | |
BBS | <390 | glass |
390–470 | , | |
470–500 | ||
500–540 | , | |
540–570 | , , | |
570–630 | , | |
BS | <440 | glass |
440–480 | ||
480–500 | , | |
500–540 | , , | |
540–750 | , |
Sample | Annealing Protocol | Average Grain Size/nm |
---|---|---|
BAG | 24 h at 470 °C | 39 |
BAS | 1 h at 580 °C | 81 |
BBS | 24 h at 390 °C | 59 |
BS | 24 h at 450 °C | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasenko, V.; Nowagiel, M.; Wasiucionek, M.; Pietrzak, T.K. Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3. Materials 2024, 17, 4023. https://doi.org/10.3390/ma17164023
Vlasenko V, Nowagiel M, Wasiucionek M, Pietrzak TK. Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3. Materials. 2024; 17(16):4023. https://doi.org/10.3390/ma17164023
Chicago/Turabian StyleVlasenko, Viktoriia, Maciej Nowagiel, Marek Wasiucionek, and Tomasz K. Pietrzak. 2024. "Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3" Materials 17, no. 16: 4023. https://doi.org/10.3390/ma17164023
APA StyleVlasenko, V., Nowagiel, M., Wasiucionek, M., & Pietrzak, T. K. (2024). Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3. Materials, 17(16), 4023. https://doi.org/10.3390/ma17164023