Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3
Abstract
1. Introduction
2. Bismuthate Glasses and Nanomaterials
3. Materials and Methods
4. Results
4.1. X-ray Diffractometry—Pristine Glasses
4.2. Differential Thermal Analysis (DTA)
4.3. High-Temperature X-ray Diffractometry
4.4. Optimization of Crystallization Process
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DTA | Differential Thermal Analysis |
XRD | X-ray Diffractometry |
ICDD | International Centre for Diffraction Data |
ICSD | Inorganic Crystal Structure Database |
References
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef]
- Gupta, P.; Pushpakanth, S.; Haider, M.A.; Basu, S. Understanding the Design of Cathode Materials for Na-Ion Batteries. ACS Omega 2022, 7, 5605–5614. [Google Scholar] [CrossRef] [PubMed]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef] [PubMed]
- Sha, M.; Liu, L.; Zhao, H.; Lei, Y. Review on Recent Advances of Cathode Materials for Potassium-ion Batteries. Energy Environ. Mater. 2020, 3, 56–66. [Google Scholar] [CrossRef]
- Skinner, S.J.; Kilner, J.A. Oxygen ion conductors. Mater. Today 2003, 6, 30–37. [Google Scholar] [CrossRef]
- Kuwano, J. Silver ion conducting glasses and some applications. Solid State Ionics 1990, 40-41, 696–699. [Google Scholar] [CrossRef]
- Harwig, H.A. On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase. Z. Anorg. Und Allg. Chem. 1978, 444, 151–166. [Google Scholar] [CrossRef]
- Harwig, H.; Gerards, A. The polymorphism of bismuth sesquioxide. Thermochim. Acta 1979, 28, 121–131. [Google Scholar] [CrossRef]
- Ling, C.D.; Johnson, M. Modelling, refinement and analysis of the “Type III” δ-Bi2O3-related superstructure in the Bi2O3–Nb2O5 system. J. Solid State Chem. 2004, 177, 1838–1846. [Google Scholar] [CrossRef]
- Takahashi, T.; Iwahara, H. Oxide ion conductors based on bismuthsesquioxide. Mater. Res. Bull. 1978, 13, 1447–1453. [Google Scholar] [CrossRef]
- Jiang, N.; Wachsman, E.D. Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides. J. Am. Ceram. Soc. 1999, 82, 3057–3064. [Google Scholar] [CrossRef]
- Wachsman, E.D. Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides. J. Eur. Ceram. Soc. 2004, 24, 1281–1285. [Google Scholar] [CrossRef]
- Punn, R.; Feteira, A.M.; Sinclair, D.C.; Greaves, C. Enhanced Oxide Ion Conductivity in Stabilized δ-Bi2O3. J. Am. Chem. Soc. 2006, 128, 15386–15387. [Google Scholar] [CrossRef]
- Borowska-Centkowska, A.; Liu, X.; Holdynski, M.; Malys, M.; Hull, S.; Krok, F.; Wrobel, W.; Abrahams, I. Conductivity in lead substituted bismuth yttrate fluorites. Solid State Ionics 2014, 254, 59–64. [Google Scholar] [CrossRef]
- Switzer, J.A.; Shumsky, M.G.; Bohannan, E.W. Electrodeposited Ceramic Single Crystals. Science 1999, 284, 293–296. [Google Scholar] [CrossRef]
- Bohannan, E.W.; Jaynes, C.C.; Shumsky, M.G.; Barton, J.K.; Switzer, J.A. Low-temperature electrodeposition of the high-temperature cubic polymorph of bismuth(III) oxide. Solid State Ionics 2000, 131, 97–107. [Google Scholar] [CrossRef]
- Zhu, Y.; An, P.; Yu, M.; Marcelli, A.; Liu, Y.; Hu, T.; Xu, W. Structural phase transitions in ionic conductor Bi2O3 by temperature dependent XPD and XAS. J. Phys. Conf. Ser. 2016, 712, 012132. [Google Scholar] [CrossRef]
- Gomez, C.L.; Depablos-Rivera, O.; Medina, J.C.; Silva-Bermudez, P.; Muhl, S.; Zeinert, A.; Rodil, S.E. Stabilization of the delta-phase in Bi2O3 thin films. Solid State Ionics 2014, 255, 147–152. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Shinkuma, Y.; Minami, T. Stabilization of superionic α-Agl at room temperature in a glass matrix. Nature 1991, 354, 217–218. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Garbarczyk, J.E.; Wasiucionek, M. Stabilization of the δ-Bi2O3-like structure down to room temperature by thermal nanocrystallization of bismuth oxide-based glasses. Solid State Ionics 2018, 323, 78–84. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Jarocka, A.; Jastrzębski, C.; Płociński, T.; Wasiucionek, M.; Garbarczyk, J.E. Facile and reproducible method of stabilizing [Formula: See text] phases confined in nanocrystallites embedded in amorphous matrix. Sci. Rep. 2021, 11, 19145. [Google Scholar] [CrossRef] [PubMed]
- Maeder*, T. Review of Bi2O3based glasses for electronics and related applications. Int. Mater. Rev. 2013, 58, 3–40. [Google Scholar] [CrossRef]
- Komatsu, T.; Dimitrov, V.; Tasheva, T.; Honma, T. A review: A new insight for electronic polarizability and chemical bond strength in Bi2O3-based glasses. J. Non Cryst. Solids 2020, 550, 120365. [Google Scholar] [CrossRef]
- Baia, L.; Iliescu, T.; Simon, S.; Kiefer, W. Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses. J. Mol. Struct. 2001, 599, 9–13. [Google Scholar] [CrossRef]
- Jiang, X.; Su, L.; Guo, X.; Tang, H.; Fan, X.; Zhan, Y.; Wang, Q.; Zheng, L.; Li, H.; Xu, J. Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses. Opt. Lett. 2012, 37, 4260. [Google Scholar] [CrossRef] [PubMed]
- Kongsriprapan, S.; Teanchai, K.; Kirdsiri, K.; Kaewkhao, J.; Siriprom, W. Investigation some Properties of Bismuth Borate Glasses Containing Al2O3. Key Eng. Mater. 2016, 675–676, 347–350. [Google Scholar] [CrossRef]
- Gattow, G.; Schröder, H. Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)-oxid (δ-Bi2O3). Z. Anorg. Allg. Chem. 1962, 318, 176–189. [Google Scholar] [CrossRef]
- Sanz, O.; Haro-Poniatowski, E.; Gonzalo, J.; Fernández Navarro, J. Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J. Non-Cryst. Solids 2006, 352, 761–768. [Google Scholar] [CrossRef]
- Simon, S.; Todea, M. Spectroscopic study on iron doped silica-bismuthate glasses and glass ceramics. J. Non-Cryst. Solids 2006, 352, 2947–2951. [Google Scholar] [CrossRef]
- Todea, M.; Simon, S. Vibrational spectroscopic study on iron doped silica-bismuthate glasses and glass ceramics. J. Optoelectron. Adv. Mater. 2007, 9, 621–624. [Google Scholar]
- Todea, M.; Turcu, R.; Vasilescu, M.; Trandafir, D.; Simon, S. Structural characterization of heavy metal SiO2–Bi2O3 glasses and glass–ceramics. J. Non-Cryst. Solids 2016, 432, 271–276. [Google Scholar] [CrossRef]
- Ahlawat, N.; Sanghi, S.; Agarwal, A.; Bala, R. Influence of SiO2 on the structure and optical properties of lithium bismuth silicate glasses. J. Mol. Struct. 2010, 963, 82–86. [Google Scholar] [CrossRef]
- Schröder, F.; Bagdassarov, N.; Ritter, F.; Bayarjargal, L. Temperature dependence of Bi2O3 structural parameters close to the α–δ phase transition. Phase Transit. 2010, 83, 311–325. [Google Scholar] [CrossRef]
- Botta, W.; Ota, K.; Hajlaoui, K.; Vaughan, G.; Yavari, A. Glass transition, thermal expansion and relaxation in B2O3 glass measured by time-resolved X-ray diffraction. J. Non-Cryst. Solids 2008, 354, 325–327. [Google Scholar] [CrossRef]
- Goj, P.; Wajda, A.; Stoch, A.; Krakowiak, I.; Stoch, P. An Insight into the Correlation between Chemical Composition Changes of Aluminum-Iron-Polyphosphate Glasses and Thermal Properties. Materials 2021, 14, 2065. [Google Scholar] [CrossRef]
- Bermeshev, T.V.; Podshibyakina, E.Y.; Bundin, M.P.; Mazurova, E.V.; Samoilo, A.S.; Yasinskii, A.S.; Yushkova, O.V.; Voroshilov, D.S.; Bespalov, V.M.; Zaloga, A.N.; et al. Crystallization and Decomposition of Compounds with the Aurivillius Crystal Structure in the Bi2GeO5–Bi2SiO5 Pseudobinary Metastable System. Phys. Met. Metallogr. 2023, 124, 205–216. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
Sample ID | Nominal Composition | Synthesis Temperature |
---|---|---|
BAG | 1350 °C | |
BAS | 1100 °C | |
BBS | 1100 °C | |
BS | 1200 °C |
Sample ID | |||||
---|---|---|---|---|---|
BAG | 471 | 560 | 658 | 735 | - |
BAS | 499 | 625 | 718 | 760 | - |
BBS | 400 | 457 | 508 | 576 | 610 |
BS | 450 | 508 | 578 | 608 | - |
Sample | Temperature Range/°C | Identified Phase |
---|---|---|
BAG | <470 | glass |
470–490 | ||
490–550 | , | |
550–720 | ||
720–750 | , , | |
BAS | <510 | glass |
510–640 | ||
640–680 | , , | |
680–710 | , , UP | |
710–740 | , , , UP | |
740–750 | , , , | |
BBS | <390 | glass |
390–470 | , | |
470–500 | ||
500–540 | , | |
540–570 | , , | |
570–630 | , | |
BS | <440 | glass |
440–480 | ||
480–500 | , | |
500–540 | , , | |
540–750 | , |
Sample | Annealing Protocol | Average Grain Size/nm |
---|---|---|
BAG | 24 h at 470 °C | 39 |
BAS | 1 h at 580 °C | 81 |
BBS | 24 h at 390 °C | 59 |
BS | 24 h at 450 °C | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasenko, V.; Nowagiel, M.; Wasiucionek, M.; Pietrzak, T.K. Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3. Materials 2024, 17, 4023. https://doi.org/10.3390/ma17164023
Vlasenko V, Nowagiel M, Wasiucionek M, Pietrzak TK. Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3. Materials. 2024; 17(16):4023. https://doi.org/10.3390/ma17164023
Chicago/Turabian StyleVlasenko, Viktoriia, Maciej Nowagiel, Marek Wasiucionek, and Tomasz K. Pietrzak. 2024. "Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3" Materials 17, no. 16: 4023. https://doi.org/10.3390/ma17164023
APA StyleVlasenko, V., Nowagiel, M., Wasiucionek, M., & Pietrzak, T. K. (2024). Stabilization of δ-like Bi2O3 Phase at Room Temperature in Binary and Ternary Bismuthate Glass Systems with Al2O3, SiO2, GeO2, and B2O3. Materials, 17(16), 4023. https://doi.org/10.3390/ma17164023