Unified Solid Solution Product of [Nb][C] in Nb-Microalloyed Steels with Various Carbon Contents
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, G.-S.; Liu, X.-H.; Wang, G.-D.; Xu, X.-Q. Numerical simulation on carburizing and quenching of gear ring. J. Iron Steel Res. Int. 2007, 14, 47–52. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Wang, H.; Song, Q.; Lu, L.; Wang, W.; Liu, Z. A comparison of the effects of traditional shot peening and micro-shot peening on the scuffing resistance of carburized and quenched gear steel. Wear 2016, 368–369, 253–257. [Google Scholar] [CrossRef]
- Ma, L.; Wang, M.; Shi, J.; Hui, W.; Dong, H. Influence of niobium microalloying on rotating bending fatigue properties of case carburized steels. Mater. Sci. Eng. A 2008, 498, 258–265. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Shi, J.; Hui, W.; Fan, G.; Dong, H. Fatigue properties of two case hardening steels after carburization. Int. J. Fatigue 2009, 31, 292–299. [Google Scholar] [CrossRef]
- Su, S.; Wang, L.; Song, R.; Wang, Y.; Li, J.; Chen, C. Gradient microstructure evolution and hardening mechanism of carburized steel under novel heat treatment. Mater. Lett. 2020, 280, 128486. [Google Scholar] [CrossRef]
- Asi, O.; Can, A.Ç.; Pineault, J.; Belassel, M. The effect of high temperature gas carburizing on bending fatigue strength of SAE 8620 steel. Mater Design 2009, 30, 1792–1797. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; He, X.-F.; Zhang, Q.-Z.; Wang, W.-J.; Wang, M.-Q. Comparison of microstructure and heat treatment distortion of gear steels with and without Nb addition. J. Iron Steel Res. Int. 2021, 28, 488–495. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Wang, M.-Q.; Chen, J.-C.; Dong, H. Microstructure and mechanical properties of gear steels after high temperature carburization. J. Iron Steel Res. Int. 2013, 20, 140–145. [Google Scholar] [CrossRef]
- Yu, Q.B.; Sun, Y. Abnormal growth of austenite grain of low-carbon steel. Mater. Sci. Eng. A 2006, 420, 34–38. [Google Scholar] [CrossRef]
- Graux, A.; Cazottes, S.; De Castro, D.; Martín, D.S.; Capdevila, C.; Cabrera, J.M.; Molas, S.; Schreiber, S.; Mirković, D.; Danoix, F.; et al. Precipitation and grain growth modelling in Ti-Nb microalloyed steels. Materialia 2019, 5, 100233. [Google Scholar] [CrossRef]
- Rios, P.R.; Fonseca, G.S. Grain boundary pinning by particles. Mater. Sci. Forum 2010, 638–642, 3907–3912. [Google Scholar] [CrossRef]
- Xiao, N.; Hui, W.; Zhang, Y.; Zhao, X.; Chen, Y.; Dong, H. High cycle fatigue behavior of a low carbon alloy steel: The influence of vacuum carburizing treatment. Eng. Fail. Anal. 2020, 109, 104215. [Google Scholar] [CrossRef]
- Xue, Y.; Yan, Y.; Yu, W.; Dong, M.; Shi, J.; Wang, M. Microstructure and fatigue properties of 17Cr2Ni2MoVNb gear steel after gas carburizing and low-pressure carburizing. Int. J. Fatigue 2023, 167, 107314. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, H.; An, X.; Wang, Z. Experimental study on carbon flux in vacuum carburizing. Mater. Res. Express 2019, 6, 096516. [Google Scholar] [CrossRef]
- Nagasaka, T.; Hishinuma, Y.; Muroga, T.; Watanabe, H.; Sakasegawa, H.; Tanigawa, H.; Ando, M. Analysis on precipitation behavior of reduced activation ferritic/martensitic steels with extraction residue tests. Fus. Eng. Des. 2013, 88, 2565–2568. [Google Scholar] [CrossRef]
- Ohtani, H.; Hasebe, M.; Nishizawa, T. Calculation of the Fe-C-Nb ternary phase diagram. Calphad 1989, 13, 183–204. [Google Scholar] [CrossRef]
- Xue, Y.; Yan, Y.; Yu, W.; He, X.; Shi, J.; Wang, M. Determination of solid solubility products of [Nb][C] in the case and the core of high-temperature carburizing steel by extraction phase analysis method. Mater. Lett. 2022, 310, 131519. [Google Scholar] [CrossRef]
- Yong, Q.L. The Second Phase in Steel Materials; Metallurgical Industry Press: Beijing, China, 2006; p. 126. ISBN 978-7-5024-4000-8. [Google Scholar]
- Koyama, S.; Ishii, T.; Narita, K. Effects of Mn, Si, Cr and Ni on the Solution and Precipitation of Niobium Carbide in Iron Austenite. J. Jpn. I. Met. 1971, 35, 1089–1094. [Google Scholar] [CrossRef]
- Akben, M.G.; Bacroix, B.; Jonas, J.J. Effect of vanadium and molybdenum addition on high temperature recovery, recrystallization and precipitation behavior of niobium-based microalloyed steels. Acta Metal. 1983, 31, 161–174. [Google Scholar] [CrossRef]
- Grains, C.Z. Phases and interphases: An interpretation of microstructure. Trans. AIME 1948, 175, 15–51. [Google Scholar]
- Khalaj, G.; Yoozbashizadeh, H.; Khodabandeh, A.; Tamizifar, M. Austenite grain growth modelling in weld heat affected zone of Nb/Ti microalloyed linepipe steel. Mater. Sci. Technol. 2014, 30, 424–433. [Google Scholar] [CrossRef]
- Maalekian, M.; Radis, R.; Militzer, M.; Moreau, A.; Poole, W. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater. 2012, 60, 1015–1026. [Google Scholar] [CrossRef]
- Manohar, P.A.; Ferry, M.; Chandra, T. Five decades of the Zener equation. ISIJ Int. 1998, 38, 913–924. [Google Scholar] [CrossRef]
- Weygand, D.; Bréchet, Y.; Lépinoux, J. Zener pinning and grain growth: A two-dimensional vertex computer simulation. Acta Mater. 1999, 47, 961–970. [Google Scholar] [CrossRef]
- Rios, P.R. Overview no. 62: A theory for grain boundary pinning by particles. Acta Metal. 1987, 35, 2805–2814. [Google Scholar] [CrossRef]
Steels | C | Si | Mn | Cr | Ni | Mo | Nb |
---|---|---|---|---|---|---|---|
20C | 0.21 | 0.02 | 0.77 | 1.59 | 1.56 | 0.31 | 0.040 |
60C | 0.60 | 0.02 | 0.76 | 1.56 | 1.55 | 0.31 | 0.037 |
100C | 0.99 | 0.02 | 0.75 | 1.60 | 1.51 | 0.32 | 0.040 |
140C | 1.45 | 0.03 | 0.79 | 1.57 | 1.54 | 0.29 | 0.046 |
180C | 1.82 | 0.03 | 0.81 | 1.61 | 1.55 | 0.32 | 0.052 |
Steel | Temp. (°C) | Precipitate | In Austenite | |||
---|---|---|---|---|---|---|
Nb | C※ | NbC | [Nb] | [C] | ||
20C | 930 | 0.030 | 0.0051 | 0.0351 | 0.010 | 0.1961 |
980 | 0.028 | 0.0047 | 0.0327 | 0.012 | 0.1964 | |
1050 | 0.022 | 0.0036 | 0.0256 | 0.018 | 0.1972 | |
1100 | 0.011 | 0.0014 | 0.0124 | 0.029 | 0.1986 | |
1200 | 0.000 | 0.0000 | 0.0000 | 0.040 | 0.2000 | |
60C | 930 | 0.032 | 0.0056 | 0.0376 | 0.005 | 0.5984 |
980 | 0.029 | 0.0051 | 0.0341 | 0.008 | 0.5989 | |
1050 | 0.028 | 0.0049 | 0.0329 | 0.009 | 0.5991 | |
1100 | 0.025 | 0.0040 | 0.0290 | 0.012 | 0.6000 | |
1200 | 0.012 | 0.0016 | 0.0136 | 0.025 | 0.6024 | |
100C | 930 | 0.032 | 0.0058 | 0.0378 | 0.008 | 0.9959 |
980 | 0.031 | 0.0056 | 0.0366 | 0.009 | 0.9960 | |
1050 | 0.029 | 0.0053 | 0.0343 | 0.011 | 0.9963 | |
1100 | 0.024 | 0.0042 | 0.0282 | 0.016 | 0.9969 | |
1200 | 0.015 | 0.0026 | 0.0176 | 0.025 | 0.9981 | |
140C | 930 | 0.034 | 0.0061 | 0.0401 | 0.012 | 1.4449 |
980 | 0.034 | 0.0060 | 0.0400 | 0.012 | 1.4450 | |
1050 | 0.030 | 0.0053 | 0.0353 | 0.016 | 1.4457 | |
1100 | 0.027 | 0.0047 | 0.0317 | 0.019 | 1.4463 | |
1200 | 0.020 | 0.0035 | 0.0235 | 0.026 | 1.4475 | |
180C | 930 | 0.032 | 0.0059 | 0.0379 | 0.020 | 1.8151 |
980 | 0.029 | 0.0053 | 0.0343 | 0.023 | 1.8157 | |
1050 | 0.028 | 0.0050 | 0.0330 | 0.024 | 1.8160 | |
1100 | 0.026 | 0.0046 | 0.0306 | 0.026 | 1.8164 | |
1200 | 0.017 | 0.0029 | 0.0199 | 0.035 | 1.8181 |
Steel | A | B |
---|---|---|
20C | 0.89 | 4361 |
60C | 1.01 | 4246 |
100C | 0.72 | 3439 |
140C | 0.15 | 2348 |
180C | −0.23 | 1462 |
Carburized Layer at 930 °C | Core at 930 °C | Carburized Layer at 980 °C | Core at 980 °C | |
---|---|---|---|---|
4 | 4 | 4 | 4 | |
12 | 12 | 12 | 12 | |
16.78 nm | 18.36 nm | 21.79 nm | 22.63 nm | |
f | 0.000454 | 0.000420 | 0.000511 | 0.000499 |
Calculation | 12.32 μm | 14.57 μm | 14.21 μm | 15.12 μm |
Experiment | 12.76 μm | 11.80 μm | 15.17 μm | 15.07 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Xue, Y.; Liu, K.; Yu, W.; Shi, J.; Wang, M. Unified Solid Solution Product of [Nb][C] in Nb-Microalloyed Steels with Various Carbon Contents. Materials 2024, 17, 3369. https://doi.org/10.3390/ma17133369
Yan Y, Xue Y, Liu K, Yu W, Shi J, Wang M. Unified Solid Solution Product of [Nb][C] in Nb-Microalloyed Steels with Various Carbon Contents. Materials. 2024; 17(13):3369. https://doi.org/10.3390/ma17133369
Chicago/Turabian StyleYan, Yongming, Yanjun Xue, Ke Liu, Wenchao Yu, Jie Shi, and Maoqiu Wang. 2024. "Unified Solid Solution Product of [Nb][C] in Nb-Microalloyed Steels with Various Carbon Contents" Materials 17, no. 13: 3369. https://doi.org/10.3390/ma17133369
APA StyleYan, Y., Xue, Y., Liu, K., Yu, W., Shi, J., & Wang, M. (2024). Unified Solid Solution Product of [Nb][C] in Nb-Microalloyed Steels with Various Carbon Contents. Materials, 17(13), 3369. https://doi.org/10.3390/ma17133369