Enhanced Ni(II) Removal from Wastewater Using Novel Molecular Sieve-Based Composites
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of MMCs
2.3. Characterization of MMCs
2.4. Adsorption Experiment
3. Results and Discussion
3.1. Characterization
3.2. Study on Adsorption Properties
3.2.1. Effect of pH
3.2.2. Effect of Contact Time
3.2.3. Effect of Initial Concentration of Ni(II)
3.2.4. Effect of Temperature
3.2.5. Study on Cycle Stability
3.2.6. Study on Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milevskii, N.A.; Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent. Hydrometallurgy 2022, 207, 105777. [Google Scholar] [CrossRef]
- Chan, K.H.; Malik, M.; Azimi, G. Separation of lithium, nickel, manganese, and cobalt from waste lithium-ion batteries using electrodialysis. Resour. Conserv. Recycl. 2022, 178, 106076. [Google Scholar] [CrossRef]
- Choubey, P.K.; Dinkar, O.S.; Panda, R.; Kumari, A.; Jha, M.K.; Pathak, D.D. Selective extraction and separation of Li, Co and Mn from leach liquor of discarded lithium ion batteries (LIBs). Waste Manag. 2021, 121, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Alvial-Hein, G.; Mahandra, H.; Ghahreman, A. Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review. J. Clean. Prod. 2021, 297, 126592. [Google Scholar] [CrossRef]
- Zante, G.; Masmoudi, A.; Barillon, R.; Trébouet, D.; Boltoeva, M. Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids. J. Ind. Eng. Chem. 2020, 82, 269–277. [Google Scholar] [CrossRef]
- Li, C.; Dai, G.; Liu, R.; Wang, C.; Wang, S.; Ju, Y.; Jiang, H.; Jiao, S.; Duan, C. Separation and recovery of nickel cobalt manganese lithium from waste ternary lithium-ion batteries. Sep. Purif. Technol. 2023, 306, 122559. [Google Scholar] [CrossRef]
- Thompson, D.L.; Pateli, I.M.; Lei, C.; Jarvis, A.; Abbott, A.P.; Hartley, J.M. Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents. Green Chem. 2022, 24, 4877–4886. [Google Scholar] [CrossRef]
- Strauss, M.L.; Diaz, L.A.; McNally, J.; Klaehn, J.; Lister, T.E. Separation of cobalt, nickel, and manganese in leach solutions of waste lithium-ion batteries using Dowex M4195 ion exchange resin. Hydrometallurgy 2021, 206, 105757. [Google Scholar] [CrossRef]
- Yuan, G.; Li, Y.; Yu, Y.; Lei, Y.; Liu, F.; Liu, D.; Pu, X.; Xiong, W. Facile construction of a core-shell structured metal-organic frameworks nanofiber membrane for removing Co(II) from simulated radioactive wastewater. Sep. Purif. Technol. 2024, 336, 126295. [Google Scholar] [CrossRef]
- Lei, S.; Yang, C.; Cao, X.; Wei, S.; Weng, Y.; Yue, Y. Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10. Sep. Purif. Technol. 2020, 250, 117258. [Google Scholar]
- Peng, Y.; Pan, T.; Chen, C.; Zhang, Y.; Yuan, G.; Liu, D.; Pu, X.; Xiong, W. In Situ Synthesis of NH2-MIL-53-Al/PAN Nanofibers for Removal Co(II) through an Electrospinning Process. Langmuir 2024, 40, 2567–2576. [Google Scholar] [CrossRef] [PubMed]
- Júnior, C.J.; de Alcântara Pessoa Filho, P. Modeling and simulation of an industrial adsorption process of dehydration of natural gas in 4A molecular sieves: Effect of adsorbent aging. Results Eng. 2023, 18, 101144. [Google Scholar] [CrossRef]
- Rahimalimamaghani, A.; Pacheco Tanaka, D.A.; Llosa Tanco, M.A.; Neira D’Angelo, F.; Gallucci, F. New hydrophilic carbon molecular sieve membranes for bioethanol dehydration via pervaporation. Chem. Eng. J. 2022, 435, 134891. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Y.; Zhang, C.; Huang, X.; Ma, K.; Zhang, Y. Preparation of graphene oxide/4A molecular sieve composite and evaluation of adsorption performance for Rhodamine B. Sep. Purif. Technol. 2022, 286, 120400. [Google Scholar] [CrossRef]
- Kretzschmar, A.; Selmert, V.; Kungl, H.; Tempel, H.; Eichel, R.-A. Application of a tailorable carbon molecular sieve to evaluate concepts for the molecular dimensions of gases. Micropor. Mesopor. Mat. 2022, 343, 112156. [Google Scholar] [CrossRef]
- Hou, M.; Li, L.; Song, J.; Xu, R.; He, Z.; Lu, Y.; Pan, Z.; Song, C.; Wang, T. Polyimide-derived carbon molecular sieve membranes for high-efficient hydrogen purification: The development of a novel phthalide-containing polyimide precursor. Sep. Purif. Technol. 2022, 301, 121982. [Google Scholar] [CrossRef]
- Goyal, N.; Gao, P.; Wang, Z.; Cheng, S.; Ok, Y.S.; Li, G.; Liu, L. Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium. J. Hazard. Mater. 2020, 392, 122494. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, R. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite. J. Hazard. Mater. 2017, 326, 157–164. [Google Scholar] [CrossRef]
- Yu, L.; Lan, T.; Yuan, G.; Duan, C.; Pu, X.; Liu, N. Synthesis and Application of a Novel Metal-Organic Frameworks-Based Ion-Imprinted Polymer for Effective Removal of Co(II) from Simulated Radioactive Wastewater. Polymers 2023, 15, 2150. [Google Scholar] [CrossRef]
- Rostami, M.S.; Khodaei, M.M. Investigation of permeability, hydrophilicity, and pollutant removal properties of PES/MIL-53(Al)@MWCNT nanofiltration membrane. Chem. Eng. J. 2023, 475, 146074. [Google Scholar] [CrossRef]
- Peng, Y.; Pan, T.; Chen, C.; Zhou, M.; Liu, D.; Feng, J.; Xiong, W.; Liu, N.; Yuan, G. Efficient removal of Co(II) from aqueous solution by one-step preparation of heterocyclic ligand-functionalized MOFs: Study on adsorption properties and irradiation stability. J. Radioanal. Nucl. Chem. 2023, 332, 4167–4177. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, D.; He, B.; Yu, B.; Pu, X.; Liu, D.; Xiong, W.; Liu, N.; Yuan, G. Facile preparation of UiO-66 derivatives for the removal of Co(II) from aqueous solution: Study on adsorption properties and irradiation stability. J. Radioanal. Nucl. Chem. 2023, 332, 4047–4056. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Cui, K.; Li, H.; Feng, J.; Pu, X.; Xiong, W.; Liu, N.; Yuan, G. Novel MOFs-based ion-imprinted polymer for selective separation of cobalt ions from waste battery leaching solution. Inorg. Chim. Acta 2022, 536, 120922. [Google Scholar] [CrossRef]
- Kong, L.; Wang, Y.; Andrews, C.B.; Zheng, C. One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water. Chem. Eng. J. 2022, 435, 134830. [Google Scholar] [CrossRef]
- Yuan, G.; Yu, Y.; Li, J.; Jiang, D.; Gu, J.; Tang, Y.; Qiu, H.; Xiong, W.; Liu, N. Facile fabrication of a noval melamine derivative-doped UiO-66 composite for enhanced Co(II) removal from aqueous solution. J. Mol. Liq. 2021, 328, 115484. [Google Scholar] [CrossRef]
- Yamane, Y.; Miyahara, M.T.; Tanaka, H. High-Performance Carbon Molecular Sieves for the Separation of Propylene and Propane. ACS Appl. Mater. Interfaces 2022, 14, 17878–17888. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.R.; Abid, H.R.; Tade, M.O.; Periasamy, V.; Sun, H.; Wang, S. Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: Proof of concept. Chem. Eng. J. 2018, 341, 262–271. [Google Scholar] [CrossRef]
- Singh, N.; Dalakoti, S.; Sharma, A.; Chauhan, R.; Murali, R.S.; Divekar, S.; Dasgupta, S. Shaping of MIL-53-Al and MIL-101 MOF for CO2/CH4, CO2/N2 and CH4/N2 separation. Sep. Purif. Technol. 2024, 341, 126820. [Google Scholar]
- Schaeffer, N.; Passos, H.; Gras, M.; Rodriguez Vargas, S.J.; Neves, M.C.; Svecova, L.; Papaiconomou, N.; Coutinho, J.A.P. Selective Separation of Manganese, Cobalt, and Nickel in a Fully Aqueous System. ACS Sustain. Chem. Eng. 2020, 8, 12260–12269. [Google Scholar] [CrossRef]
- Ying, Y.; Pourrahimi, A.M.; Sofer, Z.; Matejkova, S.; Pumera, M. Radioactive Uranium Preconcentration via Self-Propelled Autonomous Microrobots Based on Metal-Organic Frameworks. ACS Nano 2019, 13, 11477–11487. [Google Scholar] [CrossRef]
- Yin, C.; Peng, Y.; Li, H.; Yang, G.; Yuan, G. Facile construction of ZIF-94/PAN nanofiber by electrospinning for the removal of Co(II) from wastewater. Sci. Rep. 2024, 14, 414. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, T.; Feng, J.; Yu, B.; Xiong, W.; Yuan, G. Facile preparation of UiO-66-Lys/PAN nanofiber membrane by electrospinning for the removal of Co(II) from simulated radioactive wastewater. Sci. Total Environ. 2024, 914, 169725. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, X.; Peng, J. Highly selective removal and recovery of Ni(II) from aqueous solution using magnetic ion-imprinted chitosan nanoparticles. Carbohydr. Polym. 2021, 271, 118435. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.; Karimi-Jashni, A. Optimization of Ni(II) adsorption onto Cloisite Na(+) clay using response surface methodology. Chemosphere 2020, 246, 125710. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, R.; Yang, R.; Yang, F.; Chen, J.; Li, Y.; Zhou, R.; Xu, J. Synthesis of amino-functionalized biochar/spinel ferrite magnetic composites for low-cost and efficient elimination of Ni(II) from wastewater. Sci. Total Environ. 2020, 722, 137822. [Google Scholar] [CrossRef]
- Pahlavanzadeh, H.; Motamedi, M. Adsorption of Nickel, Ni(II), in Aqueous Solution by Modified Zeolite as a Cation-Exchange Adsorbent. J. Chem. Eng. Data 2019, 65, 185–197. [Google Scholar] [CrossRef]
- Liu, D.; Deng, S.; Vakili, M.; Du, R.; Tao, L.; Sun, J.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Fast and high adsorption of Ni(II) on vermiculite-based nanoscale hydrated zirconium oxides. Chem. Eng. J. 2019, 360, 1150–1157. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, R.K.; Singh, A.P. Grafting of cellulose with N-isopropylacrylamide and glycidyl methacrylate for efficient removal of Ni(II), Cu(II) and Pd(II) ions from aqueous solution. Sep. Purif. Technol. 2019, 219, 249–259. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Bahi, A.; Wuttke, S.; Kamkar, M.; Rojas, O.J.; Ko, F.; Arjmand, M. Electrospun nanofibers of chitosan/polyvinyl alcohol/UiO-66/nanodiamond: Versatile adsorbents for wastewater remediation and organic dye removal. Chem. Eng. J. 2023, 457, 141176. [Google Scholar] [CrossRef]
- Verma, A.; Johnson, G.H.; Corbin, D.R.; Shiflett, M.B. Separation of Lithium and Cobalt from LiCoO2: A Unique Critical Metals Recovery Process Utilizing Oxalate Chemistry. ACS Sustain. Chem. Eng. 2020, 8, 6100–6108. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
MS | 3.4 | 0.01 | 16.6 |
MMCs | 65.0 | 0.09 | 11.5 |
Samples | PFO Model | PSO Model | ||||
---|---|---|---|---|---|---|
qe (mg g−1) | k1 (min−1) | R2 | qe (mg g−1) | k2 (g mg−1·min−1) | R2 | |
MS | 27.1 | 0.761 | 0.975 | 29.2 | 0.0369 | 0.998 |
MMCs | 38.6 | 0.669 | 0.979 | 41.5 | 0.0252 | 0.999 |
Samples | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
qm (mg g−1) | KL (L mg−1) | R2 | KF [(mg g−1)·(L mg−1)1/n] | n | R2 | |
MS | 133.3 | 0.056 | 0.993 | 12.8 | 1.82 | 0.988 |
MMCs | 204.1 | 0.122 | 0.998 | 30.4 | 1.90 | 0.954 |
Adsorbent | Sorption Capacity (mg g−1) | Reference |
---|---|---|
MIIPs | 18.5 | [33] |
Cloisite Na+ | 32.5 | [34] |
MgFeAlO4-NH2 | 201.6 | [35] |
MZ | 0.025 | [36] |
ZrO(OH)2/VMT | 90.2 | [37] |
Cell-g-NIPAM-co-GMA | 74.7 | [38] |
MMCs | 204.1 | This Study |
Samples | T (K) | lnK | ΔG0 (kJ·mol−1) | ΔS0 (J·mol−1·K−1) | ΔH0 (kJ·mol−1) |
---|---|---|---|---|---|
MS | 288 | 1.09 | −2.5 | 53.6 | 12.9 |
298 | 1.85 | −3.1 | |||
308 | 2.34 | −3.6 | |||
MMCs | 288 | 1.87 | −1.4 | 125.6 | 34.8 |
298 | 2.94 | −2.6 | |||
308 | 3.13 | −3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Lei, Y.; Dong, L.; Yu, L.; Yin, C. Enhanced Ni(II) Removal from Wastewater Using Novel Molecular Sieve-Based Composites. Materials 2024, 17, 3211. https://doi.org/10.3390/ma17133211
Li Z, Lei Y, Dong L, Yu L, Yin C. Enhanced Ni(II) Removal from Wastewater Using Novel Molecular Sieve-Based Composites. Materials. 2024; 17(13):3211. https://doi.org/10.3390/ma17133211
Chicago/Turabian StyleLi, Zengjie, Yalin Lei, Li Dong, Li Yu, and Cong Yin. 2024. "Enhanced Ni(II) Removal from Wastewater Using Novel Molecular Sieve-Based Composites" Materials 17, no. 13: 3211. https://doi.org/10.3390/ma17133211
APA StyleLi, Z., Lei, Y., Dong, L., Yu, L., & Yin, C. (2024). Enhanced Ni(II) Removal from Wastewater Using Novel Molecular Sieve-Based Composites. Materials, 17(13), 3211. https://doi.org/10.3390/ma17133211