Preparation of Al@FTCS/P(VDF-HFP) Composite Energetic Materials and Their Reaction Properties
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation
2.3. Morphology and Structural Characterization
2.4. Water Contact Angle Measurement
2.5. Thermal Analysis
2.6. Electric Ignition and Constant-Volume Combustion Experiments
3. Results and Discussion
3.1. Hydrophobicity Test of Al, Al@FTCS, and Al@FTCS/PVH
3.2. Morphology and Composition Structure Characterizations of Al@FTCS/PVH
3.3. Thermal Analysis
3.4. Ignition and Combustion Performances of Al@FTCS/PVH and Al/PVH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dreizin, E.L. Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 2009, 35, 141–157. [Google Scholar] [CrossRef]
- Yan, Q.-L.; Cohen, A.; Petrutik, N.; Shlomovich, A.; Burstein, L.; Pang, S.-P.; Gozin, M. Highly insensitive and thermostable energetic coordination nanomaterials based on functionalized graphene oxides. J. Mater. Chem. A 2016, 4, 9941–9948. [Google Scholar] [CrossRef]
- Zhou, X.; Ke, X.; Jiang, W. Aluminum/copper oxide nanostructured energetic materials prepared by solution chemistry and electrophoretic deposition. RSC Adv. 2016, 6, 93863–93866. [Google Scholar] [CrossRef]
- Wang, L.L.; Munir, Z.A.; Maximoy, Y.M. Thermite reactions: Their utilization in the synthesis and processing of materials. J. Mater. Sci. 1993, 28, 3693–3708. [Google Scholar] [CrossRef]
- Yan, Q.-L.; Zhao, F.-Q.; Kuo, K.K.; Zhang, X.-H.; Zeman, S.; DeLuca, L.T. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 2016, 57, 75–136. [Google Scholar] [CrossRef]
- He, W.; Liu, P.; He, G.; Gozin, M.; Yan, Q. Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization. Adv. Mater. 2018, 30, 1706293. [Google Scholar] [CrossRef] [PubMed]
- Fahd, A.; Baranovsky, A.; Dubois, C.; Chaouki, J.; Wen, J.Z. Superior performance of quaternary NC/GO/Al/KClO4 nanothermite for high speed impulse small-scale propulsion applications. Combust. Flame 2021, 232, 111527. [Google Scholar] [CrossRef]
- Wang, H.; Rehwoldt, M.; Kline, D.J.; Wu, T.; Wang, P.; Zachariah, M.R. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites. Combust. Flame 2019, 201, 181–186. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Zhan, C.B.; Jin, H.B.; Chen, K.X. Novel method of thermite welding. Sci. Technol. Weld. Join. 2010, 15, 54–58. [Google Scholar] [CrossRef]
- Ma, X.; Fei, W.; Liu, J.; Zhang, X.; Ji, J.; Zhou, X. Energetic characteristics of highly reactive Si nanoparticles prepared by magnesiothermic reduction of mesoporous SiO2. Chem. Eng. J. 2024, 481, 148542. [Google Scholar] [CrossRef]
- Petrantoni, M.; Rossi, C.; Salvagnac, L.; Conédéra, V.; Estève, A.; Tenailleau, C.; Alphonse, P.; Chabal, Y.J. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro. J. Appl. Phys. 2010, 108, 084323. [Google Scholar] [CrossRef]
- Ji, J.; Liang, L.; Xu, H.; Xiang, G.; Li, H.; Li, P.; Zhou, X.; Guo, X. Facile solvent evaporation synthesis of core-shell structured Al@PVDF nanoparticles with excellent corrosion resistance and combustion properties. Combust. Flame 2022, 238, 111925. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, K.L. Fabrication and reaction mechanism study of Co(OH)F@Al nanowirearrays: A functional fluorine-containing metastable intermolecular composite. Combust. Flame 2023, 255, 112872. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust. Flame 2014, 161, 311–321. [Google Scholar] [CrossRef]
- Kim, K.T.; Kim, D.W.; Kim, C.K.; Choi, Y.J. A facile synthesis and efficient thermal oxidation of polytetrafluoroethylene-coated aluminum powders. Mater. Lett. 2016, 167, 262–265. [Google Scholar] [CrossRef]
- Xiao, F.; Liang, T.X. Preparation of hierarchical core-shell Al-PTFE@TA and Al-PTFE@TA-Fe architecture for improving the combustion and ignition properties of aluminum. Surf. Coat. Technol. 2021, 412, 127073. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.; Zhang, L.; Qiao, Z.; Gao, B.; Yang, G.; Huang, H. Design and fabrication of energetic superlattice like-PTFE/Al with superior performance and application in functional micro-initiator. Nano Energy 2015, 12, 597–605. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, Z.; Yang, Y.; Shen, J.; Long, Z.; Li, Z.; Cui, X.; Yang, G. Core-Shell Al-Polytetrafluoroethylene (PTFE) Configurations to Enhance Reaction Kinetics and Energy Performance for Nanoenergetic Materials. Chem. A Eur. J. 2016, 22, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Guo, S.; Zhang, G.; Zhou, X.; Xiao, L.; Hao, G.; Wang, N.; Jiang, W. Safe preparation, energetic performance and reaction mechanism of corrosion-resistant Al/PVDF nanocomposite films. J. Mater. Chem. A 2018, 6, 17713–17723. [Google Scholar] [CrossRef]
- Osborne, D.T.; Pantoya, M.L. Effect of Al Particle Size on the Thermal Degradation of Al/Teflon Mixtures. Combust. Sci. Technol. 2007, 179, 1467–1480. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Xu, J.; Liu, Q.; Shi, W.; Tang, W. Al@Polytannic Acid/Polyvinylidene Fluoride Nanoenergetic Films for Controlled Combustion. ACS Appl. Nano Mater. 2024, 7, 13347–13357. [Google Scholar] [CrossRef]
- Ke, X.; Guo, S.; Gou, B.; Wang, N.; Zhou, X.; Xiao, L.; Hao, G.; Jiang, W. Superhydrophobic Fluorine-Containing Protective Coating to Endow Al Nanoparticles with Long-Term Storage Stability and Self-Activation Reaction Capability. Adv. Mater. Interfaces 2019, 6, 1901025. [Google Scholar] [CrossRef]
- Fei, W.; Ma, X.; Zhang, X.; Ji, J.; Zhou, X. Perfluorotetradecanoic acid-directed precipitation of P(VDF-HFP) around nano-Al for the improved ignition and combustion characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133141. [Google Scholar] [CrossRef]
- Wang, C.; Qin, M.; Yi, Z.; Deng, H.; Wang, J.; Sun, Y.; Luo, G.; Shen, Q. Oxidation Mechanism of Core-Shell Structured Al@PVDF Powders Synthesized by Solvent/Non-Solvent Method. Materials 2022, 15, 3036. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, L.; Li, X.; Zhu, L.; Xiang, Z.; Xu, J.; Xue, D.; Deng, Z.; Su, X.; Zou, M. High-Performance Aluminum Fuels Induced by Monolayer Self-Assembly of Nano-Sized Energetic Fluoride Vesicles on the Surface. Adv. Sci. 2024, 2401564. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.J.; Colavita, P.E.; Murphy, D.M.; Platts, J.A.; Wallis, J.D. Fluorine–fluorine Interactions in the Solid State: An Experimental and Theoretical Study. J. Phys. Chem. A 2012, 116, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Lyu, J.-Y.; Tang, D.-Y.; He, G.-Q.; Liu, P.-J.; Yan, Q.-L. Control the combustion behavior of solid propellants by using core-shell Al-based composites. Combust. Flame 2020, 221, 441–452. [Google Scholar] [CrossRef]
- Cui, R.; Zhang, X.; Mao, H.; Zhang, C.; Ji, J.; Zhou, X. Reactive Characteristics of Novel Core-Shell Al-CuO Microspheres Prepared by Alcohol-Thermal Treatment of Cu(OH)2. Propellants Explos. Pyrotech. 2022, 48, e202200157. [Google Scholar] [CrossRef]
- Raza, M.A.; Kooij, E.S.; van Silfhout, A.; Poelsema, B. Superhydrophobic Surfaces by Anomalous Fluoroalkylsilane Self-Assemblyon Silica Nanosphere Arrays. Am. Chem. Soc. 2010, 26, 12962–12972. [Google Scholar]
- Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors 2020, 20, 5214. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, Z.; Liang, T.; Yang, R.; Li, J.; Luo, P. Establishing the interface layer on the aluminum surface through the self-assembly of tannic acid (TA): Improving the ignition and combustion properties of aluminum. Chem. Eng. J. 2021, 420, 130523. [Google Scholar] [CrossRef]
Sample | Q (J/g) | T0 (°C) | Tp (°C) | Mass Loss (%) |
---|---|---|---|---|
Al/PVH | 289 | 485 | 496 | 47.3 |
F2 | 1529 | 437 | 493 | 31.2 |
F4 | 1935 | 428 | 485 | 27.5 |
F8 | 573 | 442 | 476 | 34.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, X.; Deng, L.; Wang, Y.; Tang, K.; Xiao, L.; Hao, G.; Li, P.; Zhou, X. Preparation of Al@FTCS/P(VDF-HFP) Composite Energetic Materials and Their Reaction Properties. Materials 2024, 17, 3046. https://doi.org/10.3390/ma17133046
Ke X, Deng L, Wang Y, Tang K, Xiao L, Hao G, Li P, Zhou X. Preparation of Al@FTCS/P(VDF-HFP) Composite Energetic Materials and Their Reaction Properties. Materials. 2024; 17(13):3046. https://doi.org/10.3390/ma17133046
Chicago/Turabian StyleKe, Xiang, Lifang Deng, Yanping Wang, Kai Tang, Lei Xiao, Gazi Hao, Peili Li, and Xiang Zhou. 2024. "Preparation of Al@FTCS/P(VDF-HFP) Composite Energetic Materials and Their Reaction Properties" Materials 17, no. 13: 3046. https://doi.org/10.3390/ma17133046
APA StyleKe, X., Deng, L., Wang, Y., Tang, K., Xiao, L., Hao, G., Li, P., & Zhou, X. (2024). Preparation of Al@FTCS/P(VDF-HFP) Composite Energetic Materials and Their Reaction Properties. Materials, 17(13), 3046. https://doi.org/10.3390/ma17133046