Advanced Packaging Techniques—A Mini-Review of 3D Printing Potential
Abstract
:1. Introduction
2. Three-Dimensional Printed Packages
2.1. Overview of 3D Printing Methods for the Food Industry
2.2. Active Food Packaging
2.3. Intelligent Food Packaging
2.4. Thermal Insulations
2.5. Three-Dimensional Printing from Waste Biomass
3. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Evans, D.M.; Parsons, R.; Jackson, P.; Greenwood, S.; Ryan, A. Understanding Plastic Packaging: The Co-Evolution of Materials and Society. Glob. Environ. Change 2020, 65, 102166. [Google Scholar] [CrossRef]
- Lindström, T.; Österberg, F. Evolution of Biobased and Nanotechnology Packaging—A Review. Nord. Pulp Pap. Res. J. 2020, 35, 491–515. [Google Scholar] [CrossRef]
- Boz, Z.; Korhonen, V.; Koelsch Sand, C. Consumer Considerations for the Implementation of Sustainable Packaging: A Review. Sustainability 2020, 12, 2192. [Google Scholar] [CrossRef]
- Kerry, J.; Butler, P. (Eds.) Smart Packaging Technologies for Fast Moving Consumer Goods; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780470028025. [Google Scholar]
- Nguyen, A.T.; Parker, L.; Brennan, L.; Lockrey, S. A Consumer Definition of Eco-Friendly Packaging. J. Clean. Prod. 2020, 252, 119792. [Google Scholar] [CrossRef]
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent Packaging: Concepts and Applications. J. Food Sci. 2005, 70, R1–R10. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Trends in Sustainable Biobased Packaging Materials: A Mini Review. Mater. Today Sustain. 2021, 15, 100084. [Google Scholar] [CrossRef]
- Ibrahim, I.D.; Hamam, Y.; Sadiku, E.R.; Ndambuki, J.M.; Kupolati, W.K.; Jamiru, T.; Eze, A.A.; Snyman, J. Need for Sustainable Packaging: An Overview. Polymer 2022, 14, 4430. [Google Scholar] [CrossRef]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Park, S.; Shou, W.; Makatura, L.; Matusik, W.; Fu, K. (Kelvin) 3D Printing of Polymer Composites: Materials, Processes, and Applications. Matter 2022, 5, 43–76. [Google Scholar] [CrossRef]
- Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and Applications of 3D Printing for Novel Materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Sultana, N.; Ali, A.; Waheed, A.; Aqil, M. 3D Printing in Pharmaceutical Manufacturing: Current Status and Future Prospects. Mater. Today Commun. 2024, 38, 107987. [Google Scholar] [CrossRef]
- Parikh, N.; Sharma, P. Three-Dimensional Printing in Urology: History, Current Applications, and Future Directions. Urology 2018, 121, 3–10. [Google Scholar] [CrossRef]
- Anwajler, B.; Szołomicki, J.; Noszczyk, P.; Baryś, M. The Potential of 3D Printing in Thermal Insulating Composite Materials—Experimental Determination of the Impact of the Geometry on Thermal Resistance. Materials 2024, 17, 1202. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef]
- Nachal, N.; Moses, J.A.; Karthik, P.; Anandharamakrishnan, C. Applications of 3D Printing in Food Processing. Food Eng. Rev. 2019, 11, 123–141. [Google Scholar] [CrossRef]
- Hassoun, A.; Boukid, F.; Ozogul, F.; Aït-Kaddour, A.; Soriano, J.M.; Lorenzo, J.M.; Perestrelo, R.; Galanakis, C.M.; Bono, G.; Bouyahya, A.; et al. Creating New Opportunities for Sustainable Food Packaging through Dimensions of Industry 4.0: New Insights into the Food Waste Perspective. Trends Food Sci. Technol. 2023, 142, 104238. [Google Scholar] [CrossRef]
- Walther, B.A.; Kusui, T.; Yen, N.; Hu, C.-S.; Lee, H. Plastic Pollution in East Asia: Macroplastics and Microplastics in the Aquatic Environment and Mitigation Efforts by Various Actors. In Plastics in the Aquatic Environment-Part I: Current Status and Challenges; Springer: Berlin/Heidelberg, Germany, 2020; pp. 353–403. [Google Scholar]
- Uekert, T.; Singh, A.; DesVeaux, J.S.; Ghosh, T.; Bhatt, A.; Yadav, G.; Afzal, S.; Walzberg, J.; Knauer, K.M.; Nicholson, S.R.; et al. Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics. ACS Sustain. Chem. Eng. 2023, 11, 965–978. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, Y.; Ren, H.; Deng, S.; Sun, J.; Cheng, F.; Jing, J.; Chen, Y. 3D-Printed Carbon-Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics. Nano-Micro Lett. 2024, 16, 85. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, D.; Jiang, Y.; Cheng, F.; Sun, J.; Guo, Q.; Luo, Y.; Chen, Y.; Liu, W. Lightweight Zn-Philic 3D-Cu Scaffold for Customizable Zinc Ion Batteries. Adv. Funct. Mater. 2024, 34, 2312664. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Hettiarachchy, N.; Luthra, K.; Chen, J.; Seo, H.S.; Atungulu, G.G.; Ubeyitogullari, A. Effects of Polyphenol-Rich Grape Seed and Green Tea Extracts on the Physicochemical Properties of 3D-Printed Edible Soy Protein Films. Food Packag. Shelf Life 2023, 40, 101184. [Google Scholar] [CrossRef]
- Yap, K.L.; Kong, I.; Abdul Kalam Saleena, L.; Pui, L.P. 3D Printed Gelatin Film with Garcinia Atroviridis Extract. J. Food Sci. Technol. 2022, 59, 4341–4351. [Google Scholar] [CrossRef]
- Leaw, Z.E.; Kong, I.; Pui, L.P. 3D Printed Corn Starch–Gelatin Film with Glycerol and Hawthorn Berry (Crataegus Pinnatifida) Extract. J. Food Process. Preserv. 2021, 45, e15752. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, S.; Lu, R.; Sameen, D.E.; Ahmed, S.; Dai, J.; Qin, W.; Li, S.; Liu, Y. Preparation, Characterization, and 3D Printing Verification of Chitosan/Halloysite Nanotubes/Tea Polyphenol Nanocomposite Films. Int. J. Biol. Macromol. 2021, 166, 32–44. [Google Scholar] [CrossRef]
- Zhou, W.; Fang, J.; Tang, S.; Wu, Z.; Wang, X. 3D-Printed Nanocellulose-Based Cushioning–Antibacterial Dual-Function Food Packaging Aerogel. Molecules 2021, 26, 3543. [Google Scholar] [CrossRef]
- Chaiya, N.; Daranarong, D.; Worajittiphon, P.; Somsunan, R.; Meepowpan, P.; Tuantranont, A.; Rakbamrung, N.; Topham, P.D.; Tighe, B.J.; Mahomed, A.; et al. 3D-Printed PLA/PEO Blend as Biodegradable Substrate Coating with CoCl2 for Colorimetric Humidity Detection. Food Packag. Shelf Life 2022, 32, 100829. [Google Scholar] [CrossRef]
- Grabowska, B.; Kasperski, J. The Thermal Conductivity of 3D Printed Plastic Insulation Materials—The Effect of Optimizing the Regular Structure of Closures. Materials 2020, 13, 4400. [Google Scholar] [CrossRef]
- Anwajler, B. The Thermal Properties of a Prototype Insulation with a Gyroid Structure—Optimization of the Structure of a Cellular Composite Made Using SLS Printing Technology. Materials 2022, 15, 1352. [Google Scholar] [CrossRef]
- Anwajler, B.; Zielińska, S.; Witek-Krowiak, A. Innovative Cellular Insulation Barrier on the Basis of Voronoi Tessellation—Influence of Internal Structure Optimization on Thermal Performance. Materials 2024, 17, 1578. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Joseph, A.; Ejaz, M.; Maniruzzaman, M. Zinc Oxide/Clove Essential Oil Incorporated Type B Gelatin Nanocomposite Formulations: A Proof-of-Concept Study for 3D Printing Applications. Food Hydrocoll. 2020, 98, 105256. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, S.; Sameen, D.E.; Hossen, M.A.; Dai, J.; Li, S.; Qin, W.; Lee, K.J. Designing and Utilizing 3D Printed Chitosan/Halloysite Nanotubes/Tea Polyphenol Composites to Maintain the Quality of Fresh Blueberries. Innov. Food Sci. Emerg. Technol. 2021, 74, 102808. [Google Scholar] [CrossRef]
- Biswas, M.C.; Tiimob, B.J.; Abdela, W.; Jeelani, S.; Rangari, V.K. Nano Silica-Carbon-Silver Ternary Hybrid Induced Antimicrobial Composite Films for Food Packaging Application. Food Packag. Shelf Life 2019, 19, 104–113. [Google Scholar] [CrossRef]
- Ahmed, W.; Al-Marzouqi, A.H.; Nazir, M.H.; Rizvi, T.A.; Zaneldin, E.; Khan, M. Comparative Experimental Investigation of Biodegradable Antimicrobial Polymer-Based Composite Produced by 3D Printing Technology Enriched with Metallic Particles. Int. J. Mol. Sci. 2022, 23, 11235. [Google Scholar] [CrossRef]
- Ahmed, W.; Al-Marzouqi, A.H.; Nazir, M.H.; Rizvi, T.A.; Zaneldin, E.; Khan, M.; Aziz, M.; Ahmed, W.; Al-Marzouqi, A.H.; Hamza Nazir, M.; et al. Investigating the Properties and Characterization of a Hybrid 3D Printed Antimicrobial Composite Material Using FFF Process: Innovative and Swift. Int. J. Mol. Sci. 2023, 24, 8895. [Google Scholar] [CrossRef]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-Encapsulated 3D-Printable Bigels: A Colorimetric and Leaching-Resistant Volatile Amines Sensor for Intelligent Food Packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Y.; Zhou, Y.; Li, R.; Jiang, Y.; Alomgir Hossen, M.; Dai, J.; Qin, W.; Liu, Y. Facile Fabrication of Sandwich-like Anthocyanin/Chitosan/Lemongrass Essential Oil Films via 3D Printing for Intelligent Evaluation of Pork Freshness. Food Chem. 2022, 370, 131082. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, S.; Fang, E. Experimental Study of Heat Storage Performance of 3D Printed Metal Foam and Phase Change Materials Composite in Packaging Applications. In Innovative Technologies for Printing and Packaging; Lecture Notes in Electrical Engineering (LNEE); Springer: Berlin/Heidelberg, Germany, 2023; Volume 991, pp. 537–544. [Google Scholar] [CrossRef]
- Dey, S.; Hettiarachchy, N.; Bisly, A.A.; Luthra, K.; Atungulu, G.G.; Ubeyitogullari, A.; Mozzoni, L.A. Physical and Textural Properties of Functional Edible Protein Films from Soybean Using an Innovative 3D Printing Technology. J. Food Sci. 2022, 87, 4808–4819. [Google Scholar] [CrossRef]
- Zou, Y.C.; Wu, C.L.; Ma, C.F.; He, S.; Brennan, C.S.; Yuan, Y. Interactions of Grape Seed Procyanidins with Soy Protein Isolate: Contributing Antioxidant and Stability Properties. LWT 2019, 115, 108465. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, W.; Xia, Y.; Xue, W.; Wu, H.; Li, Z.; Zhang, F.; Qiu, B.; Fu, C. Properties and Applications of Intelligent Packaging Indicators for Food Spoilage. Membranes 2022, 12, 477. [Google Scholar] [CrossRef]
- Tracey, C.T.; Predeina, A.L.; Krivoshapkina, E.F.; Kumacheva, E. A 3D Printing Approach to Intelligent Food Packaging. Trends Food Sci. Technol. 2022, 127, 87–98. [Google Scholar] [CrossRef]
- Anwajler, B.; Szkudlarek, M. Właściwości Cieplne Materiałów o Strukturze TPMS Wykonanych w Technologii Druku Addytywnego SLS. Rynek Energii 2023, 1, 11–20. [Google Scholar]
- Anwajler, B.; Piwowar, A. Bioniczny Kompozyt Komórkowy o Właściwościach Izolacyjnych Wykonany w Technologii Addytywnej SLS. Izolacje 2023, 28, 116–123. [Google Scholar]
- Anwajler, B.; Spychaj, R.; Wójcik, P.; Piwowar, A. Doświadczalne Wyznaczenie Właściwości Cieplnych Prototypowych Materiałów Izolacyjnych Wykonanych Technologią Druku 3D. Rynek Energii 2021, 6, 44–51. [Google Scholar]
- Hu, X.; Gong, X. Experimental and Numerical Investigation on Thermal Performance Enhancement of Phase Change Material Embedding Porous Metal Structure with Cubic Cell. Appl. Therm. Eng. 2020, 175, 115337. [Google Scholar] [CrossRef]
- Nida, S.; Moses, J.A.; Anandharamakrishnan, C. Converting Fruit Waste to 3D Printed Food Package Casings: The Case of Banana Peel. Circ. Econ. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Nida, S.; Anukiruthika, T.; Moses, J.A.; Anandharamakrishnan, C. 3D Printing of Grinding and Milling Fractions of Rice Husk. Waste Biomass Valorization 2021, 12, 81–90. [Google Scholar] [CrossRef]
- Nida, S.; Moses, J.A.; Anandharamakrishnan, C. 3D Printed Food Package Casings from Sugarcane Bagasse: A Waste Valorization Study. Biomass Convers. Biorefinery 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Mansingh, B.B.; Binoj, J.S.; Tan, Z.Q.; Wong, W.L.E.; Amornsakchai, T.; Hassan, S.A.; Goh, K.L. Characterization and Performance of Additive Manufactured Novel Bio-Waste Polylactic Acid Eco-Friendly Composites. J. Polym. Environ. 2023, 31, 2306–2320. [Google Scholar] [CrossRef]
- Brailson Mansingh, B.; Selvi Binoj, J.; Quan Tan, Z.; Wai Leong Eugene, W.; Amornsakchai, T.; Abu Hassan, S.; Lim Goh, K.; Teknologi Malaysia, U.; Bahru, J.; Malaysia, T.; et al. Comprehensive Characterization of Raw and Treated Pineapple Leaf Fiber/Polylactic Acid Green Composites Manufactured by 3D Printing Technique. Polym. Compos. 2022, 43, 6051–6061. [Google Scholar] [CrossRef]
- Palaniyappan, S.; Sivakumar, N.K.; Bodaghi, M.; Rahaman, M.; Pandiaraj, S. Preparation and Performance Evaluation of 3D Printed Poly Lactic Acid Composites Reinforced with Silane Functionalized Walnut Shell for Food Packaging Applications. Food Packag. Shelf Life 2024, 41, 101226. [Google Scholar] [CrossRef]
- Daza, L.D.; Montealegre, M.Á.; Reche, C.; Sandoval-Aldana, A.; Eim, V.S.; Váquiro, H.A. Chachafruto Starch: Physicochemical Characterization, Film-Forming Properties, and 3D Printability. Int. J. Biol. Macromol. 2023, 247, 125795. [Google Scholar] [CrossRef]
Application | 3D Printing Method | Materials | Shape | Function | References |
---|---|---|---|---|---|
Active packaging | FDM | soy protein isolate, grape seed extract, green tea extract | film | edible active packaging | [22] |
FDM | gelatin, Garcinia atroviris extract | film | edible active packaging | [23] | |
FDM | corn starch, gelatin, hawthorn berry extract | film | edible active packaging materials | [24] | |
semisolid FDM | gelatin, sodium alginate, ZnO, clove essential oil | film | active packaging | [31] | |
FDM | chitosan, halloysite nanotubes, tea polyphenols | cuboid, 3D container | active packaging | [32] | |
FDM | chitosan, halloysite nanotubes, tea polyphenols | film | active packaging | [25] | |
coaxial FDM | carboxymethylcellulose, glycerin and acrylamide derivatives, chitosan, AgNP | film | active packaging | [26] | |
FDM | Si-C-Ag-NP, polymer | film | active packaging | [33] | |
FFF | PLA, Cu, Al, stainless steel, bronze | flat sheet | active packaging | [34] | |
FFM | Cu-PLA-SS and Cu-PLA-Al | flat sheet | active packaging | [35] | |
Intelligent packaging | coaxial hydrogel FDM | sodium alginate, chitosan, carrageenan, nanocellulose, | cuboid | freshness indicator with properties preventing food spoilage—anthocyanin–visual changes, 1-methylcyclopropene-preservation | [26] |
FDM | agar, beeswax, oil, glyceride monooleate | film layer | freshness indicator—volatile amines sensor (anthocyanins) | [36] | |
solvent-cast 3D printing | PLA/PEO | mesh | colorimetric humidity sensor | [27] | |
hydrogel FDM | chitosan, lemongrass oil, starch | film | freshness indicator with properties preventing food spoilage—anthocyanin–visual changes, lemongrass oil-preservation | [37] | |
Insulations | SLS, SLA, FDM | polyamide PA-12, PLA, UV Resins | cuboid | thermal insulations | [14,28,29,30] |
SLM | aluminum foam-paraffin | cuboid | heat storage applications | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witek-Krowiak, A.; Szopa, D.; Anwajler, B. Advanced Packaging Techniques—A Mini-Review of 3D Printing Potential. Materials 2024, 17, 2997. https://doi.org/10.3390/ma17122997
Witek-Krowiak A, Szopa D, Anwajler B. Advanced Packaging Techniques—A Mini-Review of 3D Printing Potential. Materials. 2024; 17(12):2997. https://doi.org/10.3390/ma17122997
Chicago/Turabian StyleWitek-Krowiak, Anna, Daniel Szopa, and Beata Anwajler. 2024. "Advanced Packaging Techniques—A Mini-Review of 3D Printing Potential" Materials 17, no. 12: 2997. https://doi.org/10.3390/ma17122997
APA StyleWitek-Krowiak, A., Szopa, D., & Anwajler, B. (2024). Advanced Packaging Techniques—A Mini-Review of 3D Printing Potential. Materials, 17(12), 2997. https://doi.org/10.3390/ma17122997