Accelerating the Gas–Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies
Abstract
:1. Introduction
2. Influencing Factors
2.1. Type of Gas-Sensitive Materials
2.2. Size Effect
2.2.1. Thickness of Sensitive Layer
2.2.2. Grain Size and Pore Size
2.2.3. Morphology and Structure
3. Improvement Strategies
3.1. External Excitation
3.1.1. Thermal Excitation
3.1.2. Light Activation
3.2. Nanostructure Design
3.2.1. Modulation of Size and Thickness
3.2.2. Construction of Porous and Hierarchical Structures
3.3. Element Doping
3.4. Composites Engineering
3.4.1. Heterojunction
3.4.2. Quantum Dot Modification
3.4.3. Charge Transfer Improvement
3.4.4. Ternary Composite
3.5. Other Strategies
3.5.1. Humidity
3.5.2. Specific Carrier Gas Assistance
3.5.3. Gate Voltage-Assistant Technology
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Xu, L.; Sheng, K.; Zhou, X.; Dong, B.; Lu, G.; Song, H. A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Mater. 2018, 10, 293–308. [Google Scholar] [CrossRef]
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sens. Actuators A Phys. 2022, 341, 113578. [Google Scholar] [CrossRef]
- Tong, X.; Shen, W.H.; Chen, X.Q.; Corriou, J.P. A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method. Ceram. Int. 2017, 43, 14200–14209. [Google Scholar] [CrossRef]
- Qiu, C.G.; Li, K.; Yan, W.L.; Fan, Y.; Xia, C.Y.; Sun, C.; Zeng, W.; Wang, S.L. A 2-chloroethyl ethyl sulfide (2-CEES) gas sensor based on a WO3/graphite nanocomposite with high selectivity and fast response-recovery properties. Adv. Mater. 2022, 3, 6862–6868. [Google Scholar] [CrossRef]
- Naganaboina, V.R.; Anandkumar, M.; Deshpande, A.S.; Singh, S.G. Single-phase high-entropy oxide nanoparticles for wide dynamic range detection of CO2. ACS Appl. Nano Mater. 2022, 5, 4524–4536. [Google Scholar] [CrossRef]
- Jiang, H.N.; Wang, H.Z.; Shangguan, Y.L.; Chen, J.F.; Liang, T. Homogeneously niobium-doped MoS2 for rapid and high-sensitive detection of typical chemical warfare agents. Front. Chem. 2022, 10, 1011471. [Google Scholar] [CrossRef]
- Azad, A.M.; Akbar, S.A.; Mhaisalkar, S.G.; Birkefeld, L.D.; Goto, K.S. Solid-state gas sensors: A review. J. Electrochem. Soc. 1992, 139, 3690. [Google Scholar] [CrossRef]
- Lee, Y.; Kwon, H.; Yoon, J.S.; Kim, J.K. Overcoming ineffective resistance modulation in p-type NiO gas sensor by nanoscale schottky contacts. Nanotechnology 2019, 30, 115501. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Bârsan, N.; Simion, C.E.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceramics 2010, 25, 11–19. [Google Scholar] [CrossRef]
- Hübner, M.; Simion, C.E.; Tomescu-Stănoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B Chem. 2011, 153, 347–353. [Google Scholar] [CrossRef]
- Choi, D.; Kim, H.; Son, M.; Kim, H.; Lee, H.C.; Lee, C.S. Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters. New J. Chem. 2019, 43, 7814–7821. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Hillie, K.T.; Swart, H.C.; Leshabane, N.; Tshilongo, J.; Motaung, D.E. Fabrication of a propanol gas sensor using p-type nickel oxide nanostructures: The effect of ramping rate towards luminescence and gas sensing characteristics. Mater. Chem. Phys. 2020, 253, 123316. [Google Scholar] [CrossRef]
- Fareed, S.; Medwal, R.; Vas, J.V.; Khan, I.A.; Rawat, R.S.; Rafiq, M.A. Tailoring oxygen sensing characteristics of Co3O4 nanostructures through Gd doping. Ceram. Int. 2020, 46, 9498–9506. [Google Scholar] [CrossRef]
- Kamble, V.B.; Umarji, A.M. Effect of Pt doping on the gas sensing properties of porous chromium oxide films through a kinetic response analysis approach. RSC Adv. 2015, 5, 27509–27516. [Google Scholar] [CrossRef]
- Liu, D.; Pan, J.; Tang, J.; Liu, W.; Bai, S.; Luo, R. Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 2019, 124, 36–43. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Xu, J.; Debliquy, M. Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens. Actuator A Phys. 2019, 289, 118–133. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, S.S.; Kim, H.W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J. Hazard. Mater. 2018, 357, 314–331. [Google Scholar] [CrossRef]
- Mirzaei, A.; Yousefi, H.R.; Falsafi, F.; Bonyani, M.; Lee, J.-H.; Kim, J.-H.; Kim, H.W.; Kim, S.S. An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrog. Energy 2019, 44, 20552–20571. [Google Scholar] [CrossRef]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Li, Y.; Deng, D.; Chen, N.; Xing, X.; Liu, X.; Xiao, X.; Wang, Y. Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. J. Alloys Compd. 2017, 710, 216–224. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, J.-H.; Kim, H.W.; Kim, S.S. How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature. Sens. Actuators B Chem. 2018, 258, 270–294. [Google Scholar] [CrossRef]
- Kida, T.; Nishiyama, A.; Hua, Z.; Suematsu, K.; Yuasa, M.; Shimanoe, K. WO3 nanolamella gas sensor: Porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 2014, 30, 2571–2579. [Google Scholar] [CrossRef]
- Lei, G.; Lou, C.; Liu, X.; Xie, J.; Li, Z.; Zheng, W.; Zhang, J. Thin films of tungsten oxide materials for advanced gas sensors. Sens. Actuators B Chem. 2021, 341, 129996. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Wang, Y.; Zhang, R.; Zou, C.; Zhou, Y. Black phosphorus nanosheets decorated multiscale zinc ferrite spheres toward swift and humidity-tolerant breath acetone sensing. IEEE Sens. J. 2023, 23, 1908–1916. [Google Scholar] [CrossRef]
- Chang, J.F.; Kuo, H.H.; Leu, I.C.; Hon, M.H. The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor. Sens. Actuators B Chem. 2002, 84, 258–264. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Korotcenkov, G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R Rep. 2008, 61, 1–39. [Google Scholar] [CrossRef]
- Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B Chem. 1991, 3, 147–155. [Google Scholar] [CrossRef]
- Nascimento, E.P.; Firmino, H.C.T.; Neves, G.A.; Menezes, R.R. A review of recent developments in tin dioxide nanostructured materials for gas sensors. Ceram. Int. 2022, 48, 7405–7440. [Google Scholar] [CrossRef]
- Shao, F.; Hoffmann, M.W.G.; Prades, J.D.; Morante, J.R.; López, N.; Hernández-Ramírez, F. Interaction mechanisms of ammonia and tin oxide: A combined analysis using single nanowire devices and dft calculations. J. Phys. Chem. C 2013, 117, 3520–3526. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.Y.; Zeng, D.W.; Xie, C.S. Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. [Google Scholar] [CrossRef] [PubMed]
- Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B Chem. 2001, 80, 125–131. [Google Scholar] [CrossRef]
- Varghese, O.K.; Gong, D.; Paulose, M.; Ong, K.G.; Grimes, C.A.; Dickey, E.C. Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance. J. Mater. Res. 2002, 17, 1162–1171. [Google Scholar] [CrossRef]
- Dun, M.H.; Tan, J.F.; Tan, W.H.; Tang, M.H.; Huang, X.T. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: A room-temperature H2S gas sensor with ultra-fast response and recovery. Sens. Actuators B Chem. 2019, 298, 126839. [Google Scholar] [CrossRef]
- Park, K.R.; Cho, H.B.; Lee, J.; Song, Y.; Kim, W.B.; Choa, Y.H. Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuators B Chem. 2020, 302, 127179. [Google Scholar] [CrossRef]
- Tan, W.H.; Tan, J.F.; Li, L.; Dun, M.H.; Huang, X.T. Nanosheets-assembled hollowed-out hierarchical Co3O4 microrods for fast response/recovery gas sensor. Sens. Actuators B Chem. 2017, 249, 66–75. [Google Scholar] [CrossRef]
- Akhtar, A.L.; Sadaf, S.; Liu, J.Q.; Wang, Y.; Wei, H.C.; Zhang, Q.R.; Fu, C.; Wang, J.S. Hydrothermally synthesized spherical g-C3N4-NiCo2O4 nanocomposites for ppb level ethanol detection. J. Alloys Compd. 2022, 911, 165048. [Google Scholar] [CrossRef]
- Zhang, J.X.; Guo, H.X.; Li, S.; Li, Y.; He, Y.; Li, X.S.; Tian, C.X.; Sun, D.; Liu, L. Controllable synthesis ofα-Fe2O3 micro-flowers with enhanced gas sensitivity to acetone. J. Mater. Sci. Mater. Electron. 2020, 31, 20589–20600. [Google Scholar] [CrossRef]
- Din, S.U.; ul Haq, M.; Baohui, D.; Zhu, L. Design and synthesis ofα-Bi2Mo3O12/CoSO4 composite nanofibers for high-performance SO2F2 sensors at room temperature. Mater. Today 2022, 17, 100154. [Google Scholar]
- Zhou, H.L.; Chen, X.H.; Fan, J.; Liu, P. Enhanced sensing properties of acetone with hollow porous NiO/SnO2 nanocomposites decorated by carbon nanotubes. Rare Metal. Mat. Eng. 2021, 50, 1196–1203. [Google Scholar]
- Alali, K.T.; Liu, J.Y.; Aljebawi, K.; Liu, P.L.; Chen, R.R.; Li, R.M.; Zhang, H.Q.; Zhou, L.M.; Wang, J. Electrospun n-p WO3/CuO heterostructure nanofibers as an efficient sarin nerve agent sensing material at room temperature. J. Alloys Compd. 2019, 793, 31–41. [Google Scholar] [CrossRef]
- Wang, D.W.; Pan, J.B.; Lan, T.S.; Chu, J.F.; Fan, C.Y.; Yuan, H.; Wu, Y.; Yang, A.J.; Wang, X.H.; Rong, M.Z. Tellurene nanoflake-based gas sensors for the detection of decomposition products of SF6. ACS Appl. Nano Mater. 2020, 3, 7587–7594. [Google Scholar] [CrossRef]
- Geng, X.; Liu, X.L.; Mawella-Vithanage, L.; Hewa-Rahinduwage, C.C.; Zhang, L.; Brock, S.L.; Tan, T.; Luo, L. Photoexcited NO2 enables accelerated response and recovery kinetics in light-activated NO2 gas sensing. ACS Sens. 2021, 6, 4389–4397. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shen, H.C.; Xia, Y.; Komarneni, S. Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceram. Int. 2021, 47, 7353–7368. [Google Scholar] [CrossRef]
- Nguyen, T.T.D.; Dao, D.V.; Kim, D.S.; Lee, H.J.; Oh, S.Y.; Lee, I.H.; Yu, Y.T. Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanoparticles. J. Colloid Interface Sci. 2021, 587, 252–259. [Google Scholar] [CrossRef]
- Choudhary, M.; Mishra, V.N.; Dwivedi, R. Effect of processing and palladium doping on the properties of tin oxide based thick film gas sensors. J. Mater. Sci. Mater. Electron. 2014, 25, 1331–1340. [Google Scholar] [CrossRef]
- Zhang, X.L.; Song, D.L.; Liu, Q.; Chen, R.R.; Liu, J.Y.; Zhang, H.S.; Yu, J.; Liu, P.L.; Wang, J. Designed synthesis of Co-doped sponge-like In2O3 for highly sensitive detection of acetone gas. Crystengcomm 2019, 21, 1876–1885. [Google Scholar] [CrossRef]
- Yu, H.M.; Li, J.Z.; Li, Z.Y.; Tian, Y.W.; Yang, Z.D. Enhanced formaldehyde sensing performance based on Ag@WO3 2d nanocomposite. Powder Technol. 2019, 343, 1–10. [Google Scholar] [CrossRef]
- Sun, X.Q.; Lan, Q.; Geng, J.; Yu, M.L.; Li, Y.C.; Li, X.H.; Chen, L. Polyoxometalate as electron acceptor in dye/TiO2 films to accelerate room-temperature NO2 gas sensing. Sens. Actuators B Chem. 2023, 374, 132795. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, C.Y.; Guo, S.H.; Zhang, L.B.; Wang, M.J.; Peng, J.H.; Xu, L.; Wang, J. Sulfur-vacancy-enriched MoS2 nanosheets based heterostructures for near-infrared optoelectronic NO2 sensing. ACS Appl. Nano Mater. 2019, 3, 665–673. [Google Scholar] [CrossRef]
- Ghasemi, F. Vertically aligned carbon nanotubes, MoS2-rGO based optoelectronic hybrids for NO2 gas sensing. Sci. Rep. 2020, 10, 11306. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, L.; He, S.F.; Zhou, L.X.; Wang, M.J.; Wang, J.; Komarneni, S. UV-activated WS2/SnO2 2D/0D heterostructures for fast and reversible NO2 gas sensing at room temperature. Sens. Actuators B Chem. 2022, 364, 131903. [Google Scholar] [CrossRef]
- Harathi, N.; Bollu, M.; Pasupuleti, K.S.; Tauanov, Z.; Peta, K.R.; Kim, M.D.; Reddeppa, M.; Sarkar, A.; Rao, V.N. PrGo decorated TiO2 nanoplates hybrid nanocomposite for augmented NO2 gas detection with faster gas kinetics under UV light irradiation. Sens. Actuators B Chem. 2022, 358, 131503. [Google Scholar] [CrossRef]
- Zhang, Q.P.; Chen, C.X.; Liu, Y.T.; Pan, H.; Du, H.F.; Su, Y.J.; Tai, H.L.; Xie, G.Z.; Xu, M.; Du, X.S. Improved response/recovery speeds of ZnO nanoparticle-based sensor toward NO2 gas under UV irradiation induced by surface oxygen vacancies. J. Mater. Sci. Mater. Electron. 2019, 30, 11395–11403. [Google Scholar] [CrossRef]
- Yang, C.M.; Chen, T.C.; Yang, Y.C.; Meyyappan, M. Annealing effect on UV-illuminated recovery in gas response of graphene-based NO2 sensors. RSC Adv. 2019, 9, 23343–23351. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, N.; Kumar, M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017, 2, 1744–1752. [Google Scholar] [CrossRef]
- Saboor, F.H.; Ueda, T.; Kamada, K.; Hyodo, T.; Mortazavi, Y.; Khodadadi, A.A.; Shimizu, Y. Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens. Actuators B Chem. 2016, 223, 429–439. [Google Scholar] [CrossRef]
- Postica, V.; Holken, I.; Schneider, V.; Kaidas, V.; Polonskyi, O.; Cretu, V.; Tiginyanu, I.; Faupel, F.; Adelung, R.; Lupan, O. Multifunctional device based on ZnO:Fe nanostructured films with enhanced UV and ultra-fast ethanol vapour sensing. Mater. Sci. Semicond. Process 2016, 49, 20–33. [Google Scholar] [CrossRef]
- Park, S.; An, S.; Mun, Y.; Lee, C. UV-enhanced room-temperature gas sensing of ZnGa2O4 nanowires functionalized with Au catalyst nanoparticles. Appl. Phys. A 2014, 114, 903–910. [Google Scholar] [CrossRef]
- Sun, J.B.; Xu, J.; Yu, Y.S.; Sun, P.; Liu, F.M.; Lu, G.Y. UV-activated room temperature metal oxide based gas sensor attached with reflector. Sens. Actuators B Chem. 2012, 169, 291–296. [Google Scholar] [CrossRef]
- Geng, Q.; He, Z.; Chen, X.; Dai, W.; Wang, X. Gas sensing property of ZnO under visible light irradiation at room temperature. Sens. Actuators B Chem. 2013, 188, 293–297. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sens. Actuators B Chem. 2018, 259, 269–281. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Q.; Zhang, S.; Kou, X.; Sun, P.; Lu, G. Rational design of 3D inverse opal heterogeneous composite microspheres as excellent visible-light-induced NO2 sensors at room temperature. Nanoscale 2018, 10, 4841–4851. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, X.; Li, J.; Luo, Y.; Lu, P. Role of oxygen vacancy in tuning of optical, electrical and NO2 sensing properties of ZnO1-x coatings at room temperature. Sens. Actuators B Chem. 2017, 248, 886–893. [Google Scholar] [CrossRef]
- Geng, X.; Lahem, D.; Zhang, C.; Li, C.-J.; Olivier, M.-G.; Debliquy, M. Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram. Int. 2019, 45, 4253–4261. [Google Scholar] [CrossRef]
- Espid, E.; Taghipour, F. UV-led photo-activated chemical gas sensors: A review. Crit. Rev. Solid State Mater. Sci. 2016, 42, 416–432. [Google Scholar] [CrossRef]
- Hyodo, T.; Urata, K.; Kamada, K.; Ueda, T.; Shimizu, Y. Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation. Sens. Actuators B Chem. 2017, 253, 630–640. [Google Scholar] [CrossRef]
- Hu, J.; Zou, C.; Su, Y.; Li, M.; Ye, X.; Cai, B.; Kong, E.S.-W.; Yang, Z.; Zhang, Y. Light-assisted recovery for a highly-sensitive NO2 sensor based on rGO-CeO2 hybrids. Sens. Actuators B Chem. 2018, 270, 119–129. [Google Scholar] [CrossRef]
- Zhang, B.; Bao, N.; Wang, T.; Xu, Y.; Dong, Y.; Ni, Y.; Yu, P.; Wei, Q.; Wang, J.; Guo, L.; et al. High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. J. Alloys Compd. 2021, 867, 159076. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Xia, Y.; Komarneni, S. Highly sensitive, fast and reversible NO2 sensors at room-temperature utilizing nonplasmonic electrons of ZnO/Pd hybrids. Ceram. Int. 2020, 46, 8462–8468. [Google Scholar] [CrossRef]
- Chinh, N.D.; Hien, T.T.; Do Van, L.; Hieu, N.M.; Quang, N.D.; Lee, S.-M.; Kim, C.; Kim, D. Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration. Sens. Actuators B Chem. 2019, 281, 262–272. [Google Scholar] [CrossRef]
- Punetha, D.; Pandey, S.K. Enhancement and optimization in sensing characteristics of ammonia gas sensor based on light assisted nanostructured WO3 thin film. IEEE Sens. J. 2020, 20, 14617–14623. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Adv. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Giberti, A.; Fabbri, B.; Gaiardo, A.; Guidi, V.; Malagù, C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl. Phys. Lett. 2014, 104, 222102. [Google Scholar] [CrossRef]
- Wang, P.; Hui, J.; Yuan, T.; Chen, P.; Su, Y.; Liang, W.; Chen, F.; Zheng, X.; Zhao, Y.; Hu, S. Ultrafine nanoparticles of W-doped SnO2 for durable H2S sensors with fast response and recovery. RSC Adv. 2019, 9, 11046–11053. [Google Scholar] [CrossRef]
- Chen, T.D.; Cheng, Z.Q.; Tian, Q.; Wang, J.H.; Yu, X.F.; Ho, D.R. Nitrogen dioxide gas sensor based on liquid-phase-exfoliated black phosphorus nanosheets. ACS Appl. Nano Mater. 2020, 3, 6440–6447. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, W.; BinMiao; Wang, Z. Effect of the sheet thickness of hierarchical SnO2 on the gas sensing performance. Appl. Surf. Sci. 2015, 355, 631–637. [Google Scholar] [CrossRef]
- Mun Wong, K.; Alay-e-Abbas, S.M.; Shaukat, A.; Fang, Y.; Lei, Y. First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces. J. Appl. Phys. 2013, 113, 014304. [Google Scholar] [CrossRef]
- Mei, L.; Deng, J.; Yin, X.; Zhang, M.; Li, Q.; Zhang, E.; Xu, Z.; Chen, L.; Wang, T. Ultrasensitive ethanol sensor based on 3d aloe-like SnO2. Sens. Actuators B Chem. 2012, 166–167, 7–11. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, T.; Shi, D.; Wang, W.; Yang, M.; Hussain, S.; Peng, X.; Pan, F. Hydrothermal synthesis of hierarchical SnO2 nanostructures made of superfine nanorods for smart gas sensor. Appl. Surf. Sci. 2016, 364, 371–377. [Google Scholar] [CrossRef]
- Hu, D.; Han, B.; Deng, S.; Feng, Z.; Wang, Y.; Popovic, J.; Nuskol, M.; Wang, Y.; Djerdj, I. Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. J. Phys. Chem. C 2014, 118, 9832–9840. [Google Scholar] [CrossRef]
- Zhou, X.R.; Cheng, X.W.; Zhu, Y.H.; Elzatahry, A.A.; Alghamdi, A.; Deng, Y.H.; Zhao, D.Y. Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 2018, 29, 405–416. [Google Scholar] [CrossRef]
- Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Wang, S.M.; Cao, J.; Cui, W.; Fan, L.L.; Li, X.F.; Li, D.J. Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens. Actuators B Chem. 2018, 255, 159–165. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Zhao, Y.-F.; Sun, H.; Jia, F.-C.; Kumar, P.; Liu, B. Synthesis and room-temperature H2S sensing of Pt nanoparticle-functionalized SnO2 mesoporous nanoflowers. J. Alloys Compd. 2020, 842, 155813. [Google Scholar] [CrossRef]
- Yu, H.; Yang, T.; Wang, Z.; Li, Z.; Xiao, B.; Zhao, Q.; Zhang, M. Facile synthesis cedar-like SnO2 hierarchical micro-nanostructures with improved formaldehyde gas sensing characteristics. J. Alloys Compd. 2017, 724, 121–129. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Liu, S. SnO2 nanostructure with well-engineered crystal facets by Zn doping for chemical sensing applications. Cryst. Growth Des. 2020, 20, 2742–2752. [Google Scholar] [CrossRef]
- Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P. UV effect on NO2 sensing properties of nanocrystalline In2O3. Sens. Actuators B Chem. 2016, 231, 491–496. [Google Scholar] [CrossRef]
- Hung, N.M.; Hieu, N.M.; Chinh, N.D.; Hien, T.T.; Quang, N.D.; Majumder, S.; Choi, G.; Kim, C.; Kim, D. Rb2CO3-decorated In2O3 nanoparticles for the room-temperature detection of sub-ppm level NO2. Sens. Actuators B Chem. 2020, 313, 128001. [Google Scholar] [CrossRef]
- Giancaterini, L.; Emamjomeh, S.M.; De Marcellis, A.; Palange, E.; Resmini, A.; Anselmi-Tamburini, U.; Cantalini, C. The influence of thermal and visible light activation modes on the NO2 response of WO3 nanofibers prepared by electrospinning. Sens. Actuators B Chem. 2016, 229, 387–395. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.W.; Zhuang, Z.H.; Guo, J.H.; Fang, Z.Y.; Fereja, S.L.; Chen, W. Pd-doping-induced oxygen vacancies in one-dimensional tungsten oxide nanowires for enhanced acetone gas sensing. Anal. Chem. 2021, 93, 7465–7472. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.; Qu, G.M.; Song, P.; Yang, Z.X.; Wang, Q. Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Metals 2021, 40, 1651–1661. [Google Scholar] [CrossRef]
- Gu, J.Q.; Zhang, B.; Li, Y.W.; Xu, X.T.; Sun, G.; Cao, J.L.; Wang, Y. Synthesis of spindle-like Co-doped LaFeO3 porous microstructure for high performance n-butanol sensor. Sens. Actuators B Chem. 2021, 343, 130125. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, R.; Sun, B.; Nie, G.; Ji, H.; Lei, J.; Wang, C. Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers. Ceram. Int. 2016, 42, 15881–15888. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Ren, X.; Gao, F.; Zhao, H. The effect of Eu doping on microstructure, morphology and methanal-sensing performance of highly ordered SnO2 nanorods array. Nanomaterials 2017, 7, 410. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, Z.; Xue, X.; Chen, S.; Natan, A.; Lv, Y.; Chen, C.; Yang, Y.; Cen, W.; Yang, Y. High-sensitivity and high-selectivity detection of methanol based on la-doped SnO2 sensor. Appl. Phys. A 2020, 126, 299. [Google Scholar] [CrossRef]
- Devi, K.R.; Selvan, G.; Karunakaran, M.; Kasirajan, K.; Shkir, M.; AlFaify, S. A silar fabrication of nanostructured ZnO thin films and their characterizations for gas sensing applications: An effect of Ag concentration. Superlattices Microstruct. 2020, 143, 106547. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, R.; Zhao, H.; Li, J.; Zhang, R.; Wang, Y.; Zhou, Y. Oxygen vacancy-rich ZnO nanorods-based MEMS sensors for swift trace ethanol recognition. J. Am. Ceram. Soc. 2023, 106, 1050–1061. [Google Scholar] [CrossRef]
- Qiu, J.; Xia, X.; Hu, Z.; Zhou, S.; Wang, Y.; Wang, Y.; Zhang, R.; Li, J.; Zhou, Y. Molecular ammonia sensing of PEDOT:PSS/nitrogen doped MXene Ti3C2Tx composite film at room temperature. Nanotechnology 2021, 33, 065501. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Y.; Wang, Y.; Li, X. Humidity-enabled ionic conductive trace carbon dioxide sensing of nitrogen-doped Ti3C2Tx MXene/polyethyleneimine composite films decorated with reduced graphene oxide nanosheets. Anal. Chem. 2020, 92, 16033–16042. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Zhou, Y.; Wang, Y.J. Humidity activated ionic-conduction formaldehyde sensing of reduced graphene oxide decorated nitrogen-doped MXene/titanium dioxide composite film. Sens. Actuators B Chem. 2020, 323, 128695. [Google Scholar] [CrossRef]
- Hou, N.; Sun, Q.; Yang, J.; You, S.; Cheng, Y.; Xu, Q.; Li, W.; Xing, S.; Zhang, L.; Zhu, J.; et al. Fabrication of oxygen-doped MoSe2 hierarchical nanosheets for highly sensitive and selective detection of trace trimethylamine at room temperature in air. Nano Res. 2020, 13, 1704–1712. [Google Scholar] [CrossRef]
- Zhen, Z.; Zong-Xian, C.; Ren-Jang, W.; Utkarsh, K.; Wu, C.H. A combined experimental and theoretical study of composite SnO2-BiVO4 for selective NO2 sensing. Mater. Chem. Phys. 2022, 292, 126868. [Google Scholar]
- Mahmoodnia, H.; Salehi, A.; Mastelaro, V.R. Enhancement of ammonia gas sensing properties of GaAs-based schottky diodes using ammonium sulfide surface passivation. IEEE Sens. J. 2021, 21, 4209–4215. [Google Scholar] [CrossRef]
- Xu, L.J.; Yin, M.L.; Liu, S.Z. Superior sensor performance from Ag@WO3 core-shell nanostructure. J. Alloys Compd. 2015, 623, 127–131. [Google Scholar] [CrossRef]
- Wu, R.Z.; Xin, T.Z.; Wang, Y.; Wang, T.T.; Liu, L.Z.; Hao, J.Y. A lateral built-in field of the 2D/2D SnS2/SnSe2 in-plane heterostructure with boosted interfacial charge transfer. J. Mater. Chem. A 2022, 10, 14810–14819. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, W.; Zhu, Y. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat 2019, 1, 12007. [Google Scholar] [CrossRef]
- Sun, L.; Xiang, L.; Zhao, X.; Jia, C.-J.; Yang, J.; Jin, Z.; Cheng, X.; Fan, W. Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: Key role of crystal facet combination. ACS Catal. 2015, 5, 3540–3551. [Google Scholar] [CrossRef]
- Wang, T.; Liu, G.F.; Zhang, D.Z.; Wang, D.Y.; Chen, F.J.; Guo, J.Y. Fabrication and properties of room temperature ammonia gas sensor based on SnO2 modified WSe2 nanosheets heterojunctions. Appl. Surf. Sci. 2022, 597, 153564. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nanomicro. Lett. 2021, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, J.-K.; Xu, C.-Y.; Cao, J.; Sun, Z.-Y.; Ma, L.-P.; Hu, P.A.; Ren, W.; Zhen, L. Electric field tunable interlayer relaxation process and interlayer coupling in WSe2/graphene heterostructures. Adv. Funct. Mater. 2016, 26, 4319–4328. [Google Scholar] [CrossRef]
- Li, D.; Kaner, R.B. Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc. 2006, 128, 968–975. [Google Scholar] [CrossRef]
- Zheng, S.L.; Li, Y.; Hao, J.Y.; Fang, H.T.; Yuan, Y.; Tsai, H.S.; Sun, Q.; Wan, P.; Zhang, X.; Wang, Y. Hierarchical assembly of graphene-bridged SnO2-rGO/SnS2 heterostructure with interfacial charge transfer highway for high-performance NO2 detection. Appl. Surf. Sci. 2021, 568, 150926. [Google Scholar] [CrossRef]
- Du, J.; Zhao, R.; Xie, Y.; Li, J. Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance. Appl. Surf. Sci. 2015, 346, 256–262. [Google Scholar] [CrossRef]
- Wang, M.; Xia, Y.; Qiu, J.; Ren, X. Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 170–176. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, M.; Kwan Lam, T.; Zhang, C.; Du, H.; Li, B.; Yao, Y. Fast microwave-assisted synthesis of gas-sensing SnO2 quantum dots with high sensitivity. Sens. Actuators B Chem. 2016, 236, 646–653. [Google Scholar] [CrossRef]
- Mishra, R.K.; Upadhyay, S.B.; Kushwaha, A.; Kim, T.H.; Murali, G.; Verma, R.; Srivastava, M.; Singh, J.; Sahay, P.P.; Lee, S.H. SnO2 quantum dots decorated on rGO: A superior sensitive, selective and reproducible performance for a H2 and LPG sensor. Nanoscale 2015, 7, 11971–11979. [Google Scholar] [CrossRef]
- Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M. Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens. Actuators B Chem. 2014, 205, 305–312. [Google Scholar] [CrossRef]
- Chen, R.; Wang, J.; Xia, Y.; Xiang, L. Near infrared light enhanced room-temperature NO2 gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots. Sens. Actuators B Chem. 2018, 255, 2538–2545. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Shao, G.; Zhang, W.; Wang, W.; Song, H.; Cao, H.; Ma, W.; Tang, J. Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange. Sens. Actuators B Chem. 2015, 212, 434–439. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, Y.; Guan, X.X.; Cao, J.X.; Li, W.L.; Long, X.; Tan, X. Enhanced performances of PbS quantum-dots-modified MoS2 composite for NO2 detection at room temperature. ACS Appl. Mater. Interfaces 2019, 11, 9438–9447. [Google Scholar] [CrossRef]
- Nascimento, E.P.; Firmino, H.C.T.; Santos, A.M.C.; Sales, H.B.; Silva, V.D.; Macedo, D.A.; Neves, G.A.; Medeiros, E.S.; Menezes, R.R. Facile synthesis of hollow F-doped SnO2 nanofibers and their efficiency in ethanol sensing. J. Am. Ceram. Soc. 2020, 104, 1297–1308. [Google Scholar] [CrossRef]
- Lee, J.; Jung, Y.; Sung, S.-H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.-S.; Jun, S.C.; Jeon, S. High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 2021, 9, 1159–1167. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wang, Y.; Zhang, R.; Li, J.; Li, X.; Zang, Z. Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles decorated thin black phosphorus nanosheets. Sens. Actuators B Chem. 2021, 349, 130770. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Ren, H.; Wang, Y.; Zhu, X.; Guo, Y.; Li, X. Room-temperature and humidity-resistant trace nitrogen dioxide sensing of few-layer black phosphorus nanosheet by incorporating zinc oxide nanowire. Anal. Chem. 2020, 92, 11007–11017. [Google Scholar] [CrossRef]
- Peng, F.; Wang, S.J.; Yu, W.W.; Huang, T.T.; Sun, Y.; Cheng, C.W.; Chen, X.; Hao, J.M.; Dai, N. Ultrasensitive ppb-level H2S gas sensor at room temperature based on WO3/rGO hybrids. J. Mater. Sci. Mater. Electron. 2020, 31, 5008–5016. [Google Scholar] [CrossRef]
- Song, H.J.; Yan, S.W.; Yao, Y.L.; Xia, L.X.; Jia, X.H.; Xu, J.S. 3D α-Fe2O3 nanorods arrays@graphene oxide nanosheets as sensing materials for improved gas sensitivity. Chem. Eng. J. 2019, 370, 1331–1340. [Google Scholar] [CrossRef]
- Zhang, J.N.; Lu, H.B.; Yan, C.; Yang, Z.B.; Zhu, G.Q.; Gao, J.Z.; Yin, F.; Wang, C.L. Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties. Sens. Actuators B Chem. 2018, 264, 128–138. [Google Scholar] [CrossRef]
- Fraih, A.J.; Mutlaq, H.M. Controlled reduction of graphene oxide via hydrogen plasma for tuning sensitivity and recovery time of rGO based oxygen gas sensor. Eur. Phys. J.-Appl. Phys. 2021, 95, 30101. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 2017, 244, 466–474. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Cui, X.; Wang, Y.; Gao, Y.; Sun, P.; Liu, F.; Shimanoe, K.; Yamazoe, N.; Lu, G. Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens. Actuators B Chem. 2017, 241, 904–914. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Hendi, A.H.; Hossain, M.K.; Yamani, Z.H.; Moqbel, R.A.; Hezam, A.; Gondal, M.A. UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room temperature H2 detection. Sens. Actuators B Chem. 2019, 290, 666–675. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Wang, Y.; Tai, H.; Guo, Y. UV illumination-enhanced molecular ammonia detection based on a ternary-reduced graphene oxide-titanium dioxide-Au composite film at room temperature. Anal. Chem. 2019, 91, 3311–3318. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, J.; Xu, L.; Li, X.; Huang, S. A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuators B Chem. 2020, 304, 127334. [Google Scholar] [CrossRef]
- Ghosal, S.; Bhattacharyya, P. Fabrication, characterization, and gas sensing performance of Pd, rGO, and MnO2 nanoflowers-based ternary junction device. IEEE Trans. Electron. Devices 2019, 66, 3982–3987. [Google Scholar] [CrossRef]
- Qu, X.; Yang, R.; Tong, F.; Zhao, Y.; Wang, M.H. Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties. Powder Technol. 2018, 330, 259–265. [Google Scholar] [CrossRef]
- Li, P.; Fan, H.Q. Porous In2O3 microstructures: Hydrothermal synthesis and enhanced Cl2sensing performance. Mater. Sci. Semicond. Process 2015, 29, 83–89. [Google Scholar] [CrossRef]
- Qin, W.B.; Yuan, Z.Y.; Gao, H.L.; Zhang, R.Z.; Meng, F.L. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Kathiravan, D.; Huang, B.R. Concurrent enhancement in the H2 and UV sensing properties of ZnO nanostructures through discontinuous lattice coating of La3+via partial p-n junction formation. J. Mater. Chem. C 2018, 6, 2387–2395. [Google Scholar] [CrossRef]
- Guo, X.X.; Zhang, J.B.; Ni, M.C.; Liu, L.; Lian, H.W.; Wang, H. Comparison of gas sensing properties based on hollow and porous α-Fe2O3 nanotubes. J. Mater. Sci. Mater. Electron. 2016, 27, 11262–11267. [Google Scholar] [CrossRef]
- Wu, Z.L.; Li, Z.J.; Li, H.; Sun, M.X.; Han, S.B.; Cai, C.; Shen, W.Z.; Fu, Y.Q. Ultrafast response/recovery and high selectivity of the H2S gas sensor based on α-Fe2O3 nano-ellipsoids from one-step hydrothermal synthesis. ACS Appl. Mater. Interfaces 2019, 11, 12761–12769. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Yan, S.N.; Wu, Z.L.; Li, H.; Wang, J.Q.; Shen, W.Z.; Wang, Z.G.; Fu, Y.Q. Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit. Int. J. Hydrog. Energy 2018, 43, 22746–22755. [Google Scholar] [CrossRef]
- D’Arsie, L.; Alijani, V.; Brunelli, S.T.S.; Rigoni, F.; Di Santo, G.; Caputo, M.; Panighel, M.; Freddi, S.; Sangaletti, L.; Goldoni, A. Improved recovery time and sensitivity to H2 and NH3 at room temperature with snox vertical nanopillars on ito. Sci. Rep. 2018, 8, 10028. [Google Scholar] [CrossRef]
- Zhang, B.W.; Fu, W.Y.; Li, H.Y.; Fu, X.L.; Wang, Y.; Bala, H.; Wang, X.D.; Sun, G.; Cao, J.L.; Zhang, Z.Y. Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Appl. Surf. Sci. 2016, 363, 560–565. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Wang, S.; Wang, X.; Chen, Y.; Zhang, G.; Ma, S.; Pei, S. Design of high-sensitivity ethanol sensor based on pr-doped SnO2 hollow beaded tubular nanostructure. Vacuum 2021, 189, 110244. [Google Scholar] [CrossRef]
- Pei, S.T.; Ma, S.Y.; Xu, X.L.; Xu, X.H.; Almamoun, O. Modulated PrFeO3 by doping Sm3+ for enhanced acetone sensing properties. J. Alloys Compd. 2021, 856, 158274. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, S.; Tie, Y.; Zhang, Q.; Wang, W.; Pei, S.; Xu, X. Highly sensitive formaldehyde gas sensors based on Y-doped SnO2 hierarchical flower-shaped nanostructures. J. Alloys Compd. 2019, 792, 938–944. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Z.; Yu, Z.; Wang, B.; Wang, H.; Sun, P.; Suo, H.; Gao, Y.; Sun, Y.; Li, T.; et al. Low operating temperature toluene sensor based on novel α-Fe2O3/SnO2 heterostructure nanowire arrays. RSC Adv. 2016, 6, 52604–52610. [Google Scholar] [CrossRef]
- Nagaraju, P.; Vijayakumar, Y.; Reddy, M.V.R.; Deshpande, U.P. Effect of vanadium pentoxide concentration in ZnO/V2O5 nanostructured composite thin films for toluene detection. RSC Adv. 2019, 9, 16515–16524. [Google Scholar] [CrossRef]
- Basu, A.K.; Chauhan, P.S.; Awasthi, M.; Bhattacharya, S. α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. Appl. Surf. Sci. 2019, 465, 56–66. [Google Scholar] [CrossRef]
- Tan, W.H.; Tan, J.F.; Fan, L.R.; Yu, Z.T.; Qian, J.; Huang, X.T. Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor. Sens. Actuators B Chem. 2018, 256, 282–293. [Google Scholar] [CrossRef]
- Na, H.B.; Zhang, X.F.; Zhang, M.; Deng, Z.P.; Cheng, X.L.; Huo, L.H.; Gao, S. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sens. Actuators B Chem. 2019, 297, 126816. [Google Scholar] [CrossRef]
- Li, N.; Fan, Y.; Shi, Y.; Xiang, Q.; Wang, X.; Xu, J. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism. Sens. Actuators B Chem. 2019, 294, 106–115. [Google Scholar] [CrossRef]
- Ikram, M.; Liu, L.J.; Liu, Y.; Ma, L.F.; Lv, H.; Ullah, M.; He, L.; Wu, H.Y.; Wang, R.H.; Shi, K.Y. Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 2019, 7, 14602–14612. [Google Scholar] [CrossRef]
- Zhang, S.H.; Liu, Z.; Zhang, L.; Chen, J.F.; Zhang, H.F.; Zhou, Q.; Nie, L.F.; Dong, Z.B.; Zhang, Z.A.; Wang, Z.G.; et al. Planar rose-like ZnO/honeycombed gallium nitride heterojunction prepared by CVD towards enhanced H2 sensing without precious metal modification. Vacuum 2021, 190, 110312. [Google Scholar] [CrossRef]
- Wang, J.Y.; Zhang, J.; Wang, W.F.; Guo, Y.N. Micro-schottky junction-boosted efficient charge transducing for ultrasensitive NO2 sensing. Adv. Mater. Technol. 2021, 6, 2000566. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhu, Z.Y.; Guo, T.C.; Li, H.; Xue, Q.Z. Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application. J. Hazard. Mater. 2018, 353, 290–299. [Google Scholar] [CrossRef]
- Wang, C.; Li, R.L.; Feng, L.Y.; Xu, J.Q. The SnO2/MXene composite ethanol sensor based on MEMS platform. Chemosensors 2022, 10, 109. [Google Scholar] [CrossRef]
- Sun, D.; Wang, W.; Liu, C.X.; Li, X.; Zhou, J.R.; Ma, Y.; Ruan, S.P. A comprehensive optimization of the sensitivity of CdS/CdIn2S4 composites to triethylamine gas. Sens. Actuators B Chem. 2022, 373, 132722. [Google Scholar] [CrossRef]
- Guo, W.W.; Huang, L.L.; Liu, X.C.; Wang, J.; Zhang, J. Enhanced isoprene gas sensing performance based on p-CaFe2O4/n-ZnFe2O4 heterojunction composites. Sens. Actuators B Chem. 2022, 354, 131243. [Google Scholar] [CrossRef]
- Lv, Y.K.; Li, Y.Y.; Yao, H.C.; Li, Z.J. Nitrogen-doped graphene quantum dots-modified mesoporous SnO2 hierarchical hollow cubes for low temperature detection of nitrogen dioxide. Sens. Actuators B Chem. 2021, 339, 129882. [Google Scholar] [CrossRef]
- Monamary, A.; Vijayalakshmi, K.; Renitta, A. Influence of post-deposition annealing and the ITO underlayer on the properties of hybrid TiO2/ITO nanocomposite for enhanced hydrogen sensing at room temperature. Ceram. Int. 2018, 44, 993–1001. [Google Scholar] [CrossRef]
- Lian, X.; Li, Y.; Zhu, J.; Zou, Y.; An, D.; Wang, Q. Fabrication of Au-decorated SnO2 nanoparticles with enhanced n-buthanol gas sensing properties. Mater. Sci. Semicond. Process 2019, 101, 198–205. [Google Scholar] [CrossRef]
- Bing, Y.F.; Zeng, Y.; Feng, S.R.; Qiao, L.; Wang, Y.Z.; Zheng, W.T. Multistep assembly of Au-loaded SnO2 hollow multilayered nanosheets for high-performance CO detection. Sens. Actuators B Chem. 2016, 227, 362–372. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Wei, W.; Zhu, L.; Wen, S.; Ruan, S. Synergistically improved formaldehyde gas sensing properties of SnO2 microspheres by indium and palladium Co-doping. Ceram. Int. 2015, 41, 7329–7336. [Google Scholar] [CrossRef]
- Abed, H.R.; Yousif, A.A.; Alwan, A.M.; Habubi, N.F. Efficient, fast response, and low cost sensor for NH3 gas molecules based on SnO2: CuO/macroPSi nanocomposites. Appl. Phys. A 2020, 126, 917. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Chen, X.; Lu, G.; Song, X.; Tian, J.; Cui, H.; Zhang, G.; Gao, K. SnO2 core-shell hollow microspheres Co-modification with Au and NiO nanoparticles for acetone gas sensing. Powder Technol. 2020, 364, 159–166. [Google Scholar] [CrossRef]
- Pour, G.B.; Aval, L.F. Comparison of fast response and recovery Pd nanoparticles and Ni thin film hydrogen gas sensors based on metal-oxide-semiconductor structure. Nano 2017, 12, 1750096. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, Y.; Fan, Y.Z.; Zhou, J.R.; Li, X.; Adimi, S.; Liu, C.X.; Ruan, S.P. Metal-organic framework-derived ZnO/ZnCo2O4 microspheres modified by catalytic PdO nanoparticles for sub-ppm-level formaldehyde detection. Sens. Actuators B Chem. 2020, 315, 128118. [Google Scholar] [CrossRef]
- Yu, H.M.; Li, J.Z.; Luo, W.B.; Li, Z.Y.; Tian, Y.W.; Yang, Z.D.; Gao, X.W.; Liu, H. Hetero-structure La2O3-modified SnO2-Sn3O4 from tin anode slime for highly sensitive and ppb-level formaldehyde detection. Appl. Surf. Sci. 2020, 513, 145825. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y. Recent progress on anti-humidity strategies of chemiresistive gas sensors. Materials 2022, 15, 8728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Y.H.; Wang, Y.J.; Yu, H.C.; Zhang, R.J.; Li, J.; Zang, Z.G.; Li, X. MXene Ti3C2Tx-derived nitrogen-functionalized heterophase TiO2 homojunctions for room-temperature trace ammonia gas sensing. ACS Appl. Mater. Interfaces 2021, 13, 56485–56497. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Xie, G.; Li, J.; Wang, Y.; Liu, X.; Zang, Z. Dual resistance and impedance investigation: Ultrasensitive and stable humidity detection of molybdenum disulfide nanosheet-polyethylene oxide hybrids. ACS Appl. Mater. Interfaces 2021, 13, 25250–25259. [Google Scholar] [CrossRef]
- Ko, K.Y.; Park, K.; Lee, S.; Kim, Y.; Woo, W.J.; Kim, D.; Song, J.G.; Park, J.; Kim, H. Recovery improvement for large-area tungsten diselenide gas sensors. ACS Appl. Mater. Interfaces 2018, 10, 23910–23917. [Google Scholar] [CrossRef]
- Marani, D.; Silva, R.H.; Dankeaw, A.; Norrman, K.; Werchmeister, R.M.L.; Ippolito, D.; Gudik-Sorensen, M.; Hansen, K.K.; Esposito, V. NOx selective catalytic reduction (SCR) on self-supported V-W-doped TiO2 nanofibers. New J. Chem. 2017, 41, 3466–3472. [Google Scholar] [CrossRef]
- Song, Z.X.; Ning, P.; Zhang, Q.L.; Li, H.; Zhang, J.H.; Wang, Y.C.; Liu, X.; Huang, Z.Z. Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3. J. Environ. Sci. 2016, 42, 168–177. [Google Scholar] [CrossRef]
- Hayasaka, T.; Kubota, Y.; Liu, Y.; Lin, L. The influences of temperature, humidity, and O2 on electrical properties of graphene FETs. Sens. Actuators B Chem. 2019, 285, 116–122. [Google Scholar] [CrossRef]
- Bondavalli, P.; Legagneux, P.; Pribat, D. Carbon nanotubes based transistors as gas sensors: State of the art and critical review. Sens. Actuators B Chem. 2009, 140, 304–318. [Google Scholar] [CrossRef]
- Novak, J.P.; Snow, E.S.; Houser, E.J.; Park, D.; Stepnowski, J.L.; McGill, R. Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 2003, 83, 4026–4028. [Google Scholar] [CrossRef]
- Chang, Y.W.; Oh, J.S.; Yoo, S.H.; Choi, H.H.; Yoo, K.-H. Electrically refreshable carbon-nanotube-based gas sensors. Nanotechnology 2007, 18, 435504. [Google Scholar] [CrossRef]
- Peng, N.; Zhang, Q.; Lee, Y.C.; Tan, O.K.; Marzari, N. Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors. Sens. Actuators B Chem. 2008, 132, 191–195. [Google Scholar] [CrossRef]
- Jaiswal, M.; Kumar, R.; Mittal, J.; Jha, P. NO2 gas sensor using iodine doped graphene at room temperature with electric field enhanced recovery. IEEE Sens. J. 2022, 22, 6303–6310. [Google Scholar] [CrossRef]
- Wu, M.; Kim, C.-H.; Shin, J.; Hong, Y.; Jin, X.; Lee, J.-H. Effect of a pre-bias on the adsorption and desorption of oxidizing gases in FET-type sensor. Sens. Actuators B Chem. 2017, 245, 122–128. [Google Scholar] [CrossRef]
- Wu, M.; Shin, J.; Hong, Y.; Jin, X.; Lee, J.-H. Pulse biasing scheme for the fast recovery of FET-type gas sensors for reducing gases. IEEE Electron. Device Lett. 2017, 38, 971–974. [Google Scholar] [CrossRef]
- Lei, G.; Pan, H.; Mei, H.; Liu, X.; Lu, G.; Lou, C.; Li, Z.; Zhang, J. Emerging single atom catalysts in gas sensors. Chem. Soc. Rev. 2022, 51, 7260–7280. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Rong, C.; Zhou, L.; Mao, X.; Zhang, B.; Xuan, F. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, 2206783. [Google Scholar] [CrossRef]
- Wang, P.; Ba, X.; Zhang, X.; Gao, H.; Han, M.; Zhao, Z.; Chen, X.; Wang, L.; Diao, X.; Wang, G. Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chem. Eng. J. 2023, 457, 141248. [Google Scholar] [CrossRef]
- Cai, C.; Teng, Y.; Wu, J.-H.; Li, J.-Y.; Chen, H.-Y.; Chen, J.-H.; Kuang, D.-B. In situ photosynthesis of an MAPbI3/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution. Adv. Funct. Mater. 2020, 30, 2001478. [Google Scholar] [CrossRef]
- Dai, Z.; Liang, T.; Lee, J.H. Gas sensors using ordered macroporous oxide nanostructures. Nanoscale Adv. 2019, 1, 1626–1639. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Shan, N.; Xu, L.; Wang, J.; Chen, J.; Zakhidov, A.A.; Baughman, R.H. General synthesis of 3D ordered macro-/mesoporous materials by templating mesoporous silica confined in opals. Chem. Mater. 2018, 30, 1617–1624. [Google Scholar] [CrossRef]
- Lemme, M.C.; Wagner, S.; Lee, K.; Fan, X.; Verbiest, G.J.; Wittmann, S.; Lukas, S.; Dolleman, R.J.; Niklaus, F.; van der Zant, H.S.J.; et al. Nanoelectromechanical sensors based on suspended 2D materials. Research 2020, 2020, 8748602. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Kim, S.; Jung, S.; Jang, S.; Kim, J. Suspended black phosphorus nanosheet gas sensors. Sens. Actuators B Chem. 2017, 250, 569–573. [Google Scholar] [CrossRef]
Photoactive Material | Resistance in Air (Ω) | Crystal Structure | Specific Surface Area (m2 g−1) | Response (Rg/Ra) | Tres/Trec (min) |
---|---|---|---|---|---|
SnO2 | 1.2 × 104 | Tetragonal | 21.2 | 360 | 4.6/1.6 |
In2O3 | 2 × 102 | Cubic | 23.7 | 22 | 3.9/1.0 |
WO3 | 3.1 × 105 | Monoclinic | 12.0 | 7.2 | 12.2/7.0 |
Main Accelerating Method | Material | Gas/Conc. (ppm) | T (°C)/W(nm) /I(mW⋅cm−2) | Response (S) | Tres/Trec | LOD (ppm) | Ref. |
---|---|---|---|---|---|---|---|
External excitation | TiO2 nanotube array films | H2S/1 | 300/-/- | 4.5 | 9 s/6 s | 1 | [3] |
Au decorated hierarchical ZnO | Acetone/100 | 340/-/- | 112.3 | 4 s/6 s | - | [139] | |
Ag functioned WO3 nanosheets | HCHO/100 | 300/-/- | 20.83 | 5 s/5 s | - | [50] | |
Porous In2O3 microstructures | Cl2/50 | 300/-/- | ~905 | 2 s/4 s | - | [140] | |
LaCoO3 modified ZnO | Ethanol/100 | 320/-/- | 55 | 2.8 s/9.7 s | 0.5 | [141] | |
Dye-sensitized POM/TiO2 films | NO2/1 | RT/480/- | 231 | 48 s/66 s | 0.05 | [51] | |
La-coated ZnO nanorods | H2/100 | RT/365/- | 63.80% | 15 s/9 s | - | [142] | |
WS2 nanosheets/SnO2 QDs 2D/0D heterostructures | NO2/5 | RT/365/0.37 | 340% | 10 s/9 s | 0.5 | [54] | |
rGO decorated TiO2 nanoplates | NO2/100 | RT/365/5.34 | 35.60% | ~59 s/33 s | 0.11 | [55] | |
Nanostructure design | porous α-Fe2O3 nanotubes | Acetone/100 | 240/-/- | 11 | 9 s/3 s | - | [143] |
In2O3 hierarchical architectures | HCHO/100 | 260/-/- | 8.6 | 1 s/8 s | 1 | [86] | |
α-Fe2O3 Nano-Ellipsoids | H2S/50 | 260/-/- | 8 | 0.8 s/2.2 s | 0.1 | [144] | |
Mesoporous In2O3 | H2/500 | 260/-/- | 18 | 1.7 s/1.5 s | 0.1 | [145] | |
Vertical SnOx nanopillars | NH3/2.2 | RT/-/- | - | 2.7 s/24.2 s | 1 | [146] | |
Hierarchical Co3O4 micro rods | Methanol/100 | 220/-/- | 14 | 0.8 s/7.2 s | - | [38] | |
Hierarchical porous SnO2 | Ethanol/20 | 260/-/- | ~64 | 10 s/5 s | - | [147] | |
Element doping | W-doped SnO2 nanoparticles | H2S/10 | 260/-/- | 3.6 | 17 s/7 s | 0.1 | [77] |
La-doped SnO2 nanoparticles | Methanol/75 | 220/-/- | 29.5 | 12 s/7 s | - | [98] | |
Gd-doped Co3O4 nanoparticles | O2/40,000 | 240/-/- | 921% | 23 s/22 s | - | [14] | |
Pd7.18%W18O49 nanowires | Acetone/50 | 175/-/- | ~150 | 5 s/10 s | 0.3 | [93] | |
Ag-doped ZnO thin films | NH3/100 | RT/-/- | 8260% | 27 s/7 s | - | [99] | |
Pr-doped SnO2 hollow tubes | Ethanol/100 | 200/-/- | 35.6 | 12 s/8 s | 2 | [148] | |
Coral-like Sm-doped PrFeO3 | Acetone/50 | 270/-/- | 44.94 | 15 s/16 s | - | [149] | |
Y-doped SnO2 hierarchical nanoflowers | HCHO/50 | 180/-/- | 18 | 8 s/10 s (25 ppm) | 1 | [150] | |
Co-doped sponge-like In2O3 | Acetone/100 | 240/-/- | 32.8 | ~1.1 s/37.5 s | 5 | [49] | |
Composite engineering | α-Fe2O3/SnO2 nanowires arrays | Toluene/100 | 90/-/- | 49.70% | 20 s/15 s | - | [151] |
ZnO/V2O5 thin films | Toluene/400 | 27/-/- | ~2.3 | 23 s/28 s | - | [152] | |
SnO2-BiVO4 heterojunction | NO2/0.1 | RT/-/- | 0.91% | 13 s/9 s | 0.1 | [105] | |
α-Fe2O3 loaded rGO nanosheets | CO/10 | RT/-/- | 48.14% | 21 s/8 s | - | [153] | |
Fe2O3-loaded NiO nanosheets | Methanol/100 | 255/-/- | 107.9 | 0.1 s/11.4 s | - | [154] | |
Porous CuO/ZnO tubule | H2S/0.05 | 170/-/- | ~1.6 | 35 s/29 s | 0.01 | [155] | |
Hierarchical SnO/SnO2 3D nanoflowers | HCHO/50 | 120/-/- | 80.9 | 7 s/27 s | 0.008 | [156] | |
Highly porous SnO2-CuO nanotubes | H2S/5 | 200/-/- | 1395 | 5.27 s/40 s | - | [37] | |
MoS2 nanosheets/multilayer WS2 heterojunction | NO2/50 | RT/-/- | 27% | 1.6 s/27.7 s | 0.01 | [157] | |
SnO2 nanorod decorated WSe2 nanosheets heterojunctions | NH3/5 | RT/-/- | 87.07% | 24 s/40 s | 0.1 | [111] | |
WO3 nanoparticles/multi-layer graphite nanocomposite | 2-CEES/5.7 | 260/-/- | 63% | 8 s/34 s | 0.1 | [4] | |
Planar rose-like ZnO/HGaN heterojunction | H2/50 | 150/-/- | 15.82 | 47 s/6 s | 5 | [158] | |
SnO2 nanoflowers/rGO composites | NO2/0.00001 | RT/-/- | 10.50% | 59 s/9 s | 0.00001 | [159] | |
Nanowire bundle-like WO3-W18O49 | NH3/500 | 250/-/- | 23% | 13 s/49 s | 0.46 | [160] | |
Multilayer MXene decorated SnO2 microspheres | Ethanol/10 | 230/-/- | 5 | 14 s/26 s | 0.5 | [161] | |
Macroporous flower-like structured CdS/CdIn2S4 het erojunctions | Triethylamine/10 | 161/-/- | 32.5 | 3 s/256 s | 0.5 | [162] | |
Porous CaFe2O4/ZnFe2O4 heterojunction composites | Isoprene/30 | 200/-/- | 19.5 | 72 s/35 s | - | [163] | |
graphene QD-modified SnO2 cubes | NO2/1 | 130/-/- | 417 | 59 s/33 s | 0.2 | [164] | |
3D α-Fe2O3 nanorods @GO nanosheets | Acetone/50 | 220/-/- | 19.14 | 7 s/8 s | -- | [130] | |
Bilayered TiO2/ITO films | H2/200 | RT/-/- | ~1.1 | -/4 s | - | [165] | |
Au-decorated SnO2 nanoparticles | n-buthanol/200 | 240/-/- | 251 | 3 s/11 s | 1 | [166] | |
Au-loaded multilayered SnO2 nanosheets | CO/50 | 220/-/- | 36.5 | 1 s/4.1 s | 1 | [167] | |
In/Pd co-doped SnO2 microspheres | HCHO/100 | 160/-/- | 24.6 | 3 s/6 s | - | [168] | |
Carbon nanotubes decorated NiO/SnO2 composite nanofibers | Acetone/50 | 160/-/- | 25.25 | 8.2 s/10.5 s | - | [42] | |
SnO2:CuO nanoparticles within macroporous silicon layer | NH3/150 | RT/-/- | 57% | 4 s/55 s | - | [169] | |
Core-shell Au@NiO/SnO2 microspheres | Acetone/100 | 300/-/- | 49.7 | 4 s/5 s | 0.5 | [170] | |
Pd coated SiO2/Si nanostructures | H2/10,000 | RT/-/- | 88% | 1.4 s/14 s | - | [171] | |
PdO decorated ZnO/ZnCo2O4 heterostructured microsphere | HCHO/100 | 139/-/- | 26.9 | 9 s/14 s | 0.2 | [172] | |
La2O3-modified SnO2-Sn3O4 | HCHO/100 | 220/-/- | 117.27 | 3 s/3 s | 0.08 | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Wang, Y.; Zhou, Y. Accelerating the Gas–Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies. Materials 2023, 16, 3249. https://doi.org/10.3390/ma16083249
Zhao H, Wang Y, Zhou Y. Accelerating the Gas–Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies. Materials. 2023; 16(8):3249. https://doi.org/10.3390/ma16083249
Chicago/Turabian StyleZhao, Hongchao, Yanjie Wang, and Yong Zhou. 2023. "Accelerating the Gas–Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies" Materials 16, no. 8: 3249. https://doi.org/10.3390/ma16083249