Plasmon-Assisted Trapping of Single Molecules in Nanogap
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustamante, C.J.; Chemla, Y.R.; Liu, S.; Wang, M.D. Optical tweezers in single-molecule biophysics. Nat. Rev. Dis. Primers 2021, 1, 25. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.M.; Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 2021, 17, 1324–1333. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 1970, 24, 156–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef]
- Maragò, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.; Ferrari, A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819. [Google Scholar] [CrossRef]
- Miller, J.L. A triatomic molecule is laser cooled and trapped. Phys. Today 2022, 75, 16–19. [Google Scholar] [CrossRef]
- Wang, Q.; Goldsmith, R.H.; Jiang, Y.; Bockenhauer, S.D.; Moerner, W.E. Probing Single Biomolecules in Solution Using the Anti-Brownian Electrokinetic (ABEL) Trap. Acc. Chem. Res. 2012, 45, 1955–1964. [Google Scholar] [CrossRef]
- Juan, M.L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 2009, 5, 915–919. [Google Scholar] [CrossRef]
- Berthelot, J.; Aćimović, S.S.; Juan, M.L.; Kreuzer, M.P.; Renger, J.; Quidant, R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 2014, 9, 295–299. [Google Scholar] [CrossRef]
- Giorgio, V.; Giovanni, V. Numerical simulation of Brownian particles in optical force fields. In Proceedings of the SPIE NanoScience + Engineering, San Diego, CA, USA, 12 September 2013; p. 88102R. [Google Scholar]
- Tang, L.; Yi, L.; Jiang, T.; Ren, R.; Paulose Nadappuram, B.; Zhang, B.; Wu, J.; Liu, X.; Lindsay, S.; Edel, J.B.; et al. Measuring conductance switching in single proteins using quantum tunneling. Sci. Adv 2022, 8, eabm8149. [Google Scholar] [CrossRef]
- Lin, L.; Wang, M.; Peng, X.; Lissek, E.N.; Mao, Z.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H.E.; Korgel, B.A.; et al. Opto-thermoelectric nanotweezers. Nat. Photonics 2018, 12, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Yang, S.; Ndukaife, J.C. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat. Nanotechnol. 2020, 15, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Guo, C.; Ni, L.; Zhao, X.; Zhang, S.; Xiang, D. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz 2021, 6, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Frommer, K.; Nuckolls, C.; Venkataraman, L. Single-Molecule Junction Formation in Break-Junction Measurements. J. Phys. Chem. Lett. 2021, 12, 10802–10807. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, T.; Ojambati, O.S.; Duffin, T.J.; Kang, K.; Lee, T.; Scheer, E.; Xiang, D.; Nijhuis, C.A. Plasmonic phenomena in molecular junctions: Principles and applications. Nat. Rev. Chem. 2022, 6, 681–704. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Lu, J.; Ni, L.; Liu, H.; Li, Q.; Qiu, M.; Xu, B.; Lee, T.; Zhao, Z.; et al. Atomic switches of metallic point contacts by plasmonic heating. Light Sci. Appl. 2019, 8, 34. [Google Scholar] [CrossRef]
- Yelin, T.; Chakrabarti, S.; Vilan, A.; Tal, O. Richness of molecular junction configurations revealed by tracking a full pull-push cycle. Nanoscale 2021, 13, 18434–18440. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, W.; Tang, C.; Chen, L.-C.; Chen, L.; Liu, J.; Liu, Z.; Zhang, H.-L.; Zhang, D.; Hong, W. The Control of Intramolecular Through-Bond and Through-Space Coupling in Single-Molecule Junctions. CCS Chem. 2021, 4, 713–721. [Google Scholar] [CrossRef]
- Yoo, P.S.; Kim, T. Linker-dependent Junction Formation Probability in Single-Molecule Junctions. Bull. Korean Chem. Soc. 2015, 36, 265–268. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Yin, K.; Zhang, S.; Zhao, Z.; Tan, M.; Xu, X.; Zhao, Z.; Wang, M.; Xu, B.; et al. In Situ Adjustable Nanogaps and In-Plane Break Junctions. Small Methods 2023, 2201427. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.-F.; Deng, R.; Zou, Y.-L.; Huo, C.-A.; Wang, J.-Y.; Yang, W.-M.; Liang, Q.-M.; Qiu, S.-J.; Feng, A.; Shi, J.; et al. Optical Trapping of a Single Molecule of Length Sub-1 nm in Solution. CCS Chem. 2022, 1–11. [Google Scholar] [CrossRef]
- Zhan, C.; Wang, G.; Yi, J.; Wei, J.-Y.; Li, Z.-H.; Chen, Z.-B.; Shi, J.; Yang, Y.; Hong, W.; Tian, Z.-Q. Single-Molecule Plasmonic Optical Trapping. Matter 2020, 3, 1350–1360. [Google Scholar] [CrossRef]
- Aragonès, A.C.; Domke, K.F. Nearfield trapping increases lifetime of single-molecule junction by one order of magnitude. Cell Rep. 2021, 2, 100389. [Google Scholar] [CrossRef]
- Choi, B.; Capozzi, B.; Ahn, S.; Turkiewicz, A.; Lovat, G.; Nuckolls, C.; Steigerwald, M.L.; Venkataraman, L.; Roy, X. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 2016, 7, 2701–2705. [Google Scholar] [CrossRef]
- Fung, E.D.; Adak, O.; Lovat, G.; Scarabelli, D.; Venkataraman, L. Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions. Nano Lett. 2017, 17, 1255–1261. [Google Scholar] [CrossRef]
- Xu, B.; Tao, N.J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, C.; Ni, L.; Hans, K.M.; Zhang, W.; Peng, S.; Zhao, Z.; Guhr, D.C.; Qi, Z.; Liu, H.; et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today 2021, 39, 101226. [Google Scholar] [CrossRef]
- Zhan, C.; Wang, G.; Zhang, X.-G.; Li, Z.-H.; Wei, J.-Y.; Si, Y.; Yang, Y.; Hong, W.; Tian, Z.-Q. Single-Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angew. Chem. Int. Ed. 2019, 58, 14534–14538. [Google Scholar] [CrossRef]
- Bouloumis, T.D.; Nic Chormaic, S. From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping. Appl. Sci. 2020, 10, 1375. [Google Scholar] [CrossRef]
- Juan, M.L.; Righini, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Hybertsen, M.S.; Venkataraman, L. Structure–Property Relationships in Atomic-Scale Junctions: Histograms and Beyond. Acc. Chem. Res. 2016, 49, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Inkpen, M.S.; Liu, Z.F.; Li, H.; Campos, L.M.; Neaton, J.B.; Venkataraman, L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351–358. [Google Scholar] [CrossRef]
- Quek, S.Y.; Venkataraman, L.; Choi, H.J.; Louie, S.G.; Hybertsen, M.S.; Neaton, J.B. Amine−Gold Linked Single-Molecule Circuits: Experiment and Theory. Nano Lett. 2007, 7, 3477–3482. [Google Scholar] [CrossRef] [PubMed]
- Paulsson, M.; Krag, C.; Frederiksen, T.; Brandbyge, M. Conductance of Alkanedithiol Single-Molecule Junctions: A Molecular Dynamics Study. Nano Lett. 2009, 9, 117–121. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, H.S.; Lee, J.; Tsutsui, M.; Kawai, T. Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions. J. Am. Chem. Soc. 2017, 139, 8286–8294. [Google Scholar] [CrossRef]
- Quintans, C.S.; Andrienko, D.; Domke, K.F.; Aravena, D.; Koo, S.; Díez-Pérez, I.; Aragonès, A.C. Tuning Single-Molecule Conductance by Controlled Electric Field-Induced trans-to-cis Isomerisation. Appl. Sci. 2021, 11, 3317. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, R.; Mayer, D.; Coppola, M.; Sun, L.; Kim, Y.; Wang, C.; Ni, L.; Chen, X.; Wang, M.; et al. Molecular Devices: Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices (Small 15/2018). Small 2018, 14, 1870066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, J.; Adijiang, A.; Zhao, X.; Tan, M.; Xu, X.; Zhang, S.; Zhang, W.; Zhang, X.; Wang, H.; et al. Plasmon-Assisted Trapping of Single Molecules in Nanogap. Materials 2023, 16, 3230. https://doi.org/10.3390/ma16083230
Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, Zhang S, Zhang W, Zhang X, Wang H, et al. Plasmon-Assisted Trapping of Single Molecules in Nanogap. Materials. 2023; 16(8):3230. https://doi.org/10.3390/ma16083230
Chicago/Turabian StyleWang, Maoning, Jieyi Zhang, Adila Adijiang, Xueyan Zhao, Min Tan, Xiaona Xu, Surong Zhang, Wei Zhang, Xinyue Zhang, Haoyu Wang, and et al. 2023. "Plasmon-Assisted Trapping of Single Molecules in Nanogap" Materials 16, no. 8: 3230. https://doi.org/10.3390/ma16083230
APA StyleWang, M., Zhang, J., Adijiang, A., Zhao, X., Tan, M., Xu, X., Zhang, S., Zhang, W., Zhang, X., Wang, H., & Xiang, D. (2023). Plasmon-Assisted Trapping of Single Molecules in Nanogap. Materials, 16(8), 3230. https://doi.org/10.3390/ma16083230