Effective Combination of the Metal Centers in MOF-Based Materials toward Sustainable Oxidation Catalysts
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Characterization Methods
2.2. Materials Preparation
2.3. Oxidative Desulfurization Studies
3. Results and Discussion
3.1. Materials Characterization
3.2. Catalytic Desulfurization Studies
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Ismagilov, Z.; Yashnik, S.; Kerzhentsev, M.; Parmon, V.; Bourane, A.; Al-Shahrani, F.M.; Hajji, A.A.; Koseoglu, O.R. Oxidative Desulfurization of Hydrocarbon Fuels. Catal. Rev. 2011, 53, 199–255. [Google Scholar] [CrossRef]
- Samokhvalov, A. Desulfurization of Real and Model Liquid Fuels Using Light: Photocatalysis and Photochemistry. Catal. Rev. 2012, 54, 281–343. [Google Scholar] [CrossRef]
- Stanislaus, A.; Marafi, A.; Rana, M.S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 2010, 153, 1–68. [Google Scholar] [CrossRef]
- Chandra Srivastava, V. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv. 2012, 2, 759–783. [Google Scholar] [CrossRef]
- Babich, I.V.; Moulijn, J.A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel 2003, 82, 607–631. [Google Scholar] [CrossRef]
- Campos-Martin, J.M.; Capel-Sanchez, M.C.; Perez-Presas, P.; Fierro, J.L.G. Oxidative processes of desulfurization of liquid fuels. J. Chem. Technol. Biotechnol. 2010, 85, 879–890. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Li, S.; Jin, Q.; Zhao, J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J. Ind. Eng. Chem. 2020, 82, 1–16. [Google Scholar] [CrossRef]
- Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-S.; Yang, G.-Y. Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef] [PubMed]
- Abazari, R.; Esrafili, L.; Morsali, A.; Wu, Y.; Gao, J. PMo12@UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant. Appl. Catal. B Environ. 2021, 283, 119582. [Google Scholar] [CrossRef]
- Du, D.-Y.; Qin, J.-S.; Li, S.-L.; Su, Z.-M.; Lan, Y.-Q. Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R.M.; Nadeem, M.; Muhammad, N.; Lu, X. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. J. Energy Storage 2019, 21, 632–646. [Google Scholar] [CrossRef]
- Viana, A.M.; Juliao, D.; Mirante, F.; Faria, R.G.; de Castro, B.; Balula, S.S.; Cunha-Silva, L. Straightforward activation of metal-organic framework UiO-66 for oxidative desulfurization processes. Catal. Today 2021, 362, 28–34. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Barbosa, A.D.S.; Ribeiro, S.; Santos, I.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Catal. Sci. Technol. 2014, 4, 1416–1425. [Google Scholar] [CrossRef]
- Juliao, D.; Gomes, A.C.; Pillinger, M.; Cunha-Silva, L.; de Castro, B.; Goncalves, I.S.; Balula, S.S. Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101 (Cr) encapsulated) conditions. Fuel Process. Technol. 2015, 131, 78–86. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Ferreira, P.M.C.; Juliao, D.; Ribeiro, L.A.; Valenca, R.; Ribeiro, J.C.; Goncalves, I.S.; de Castro, B.; Pillinger, M.; Cunha-Silva, L.; et al. Efficient Oxidative Desulfurization Processes Using Polyoxomolybdate Based Catalysts. Energies 2018, 11, 1696. [Google Scholar] [CrossRef]
- Mirante, F.; Gomes, N.; Branco, L.C.; Cunha-Silva, L.; Almeida, P.L.; Pillinger, M.; Gago, S.; Granadeiro, C.M.; Balula, S.S. Mesoporous nanosilica-supported polyoxomolybdate as catalysts for sustainable desulfurization. Microporous Mesoporous Mater. 2019, 275, 163–171. [Google Scholar] [CrossRef]
- Viana, A.M.; Ribeiro, S.O.; de Castro, B.; Balula, S.S.; Cunha-Silva, L. Influence of UiO-66(Zr) Preparation Strategies in Its Catalytic Efficiency for Desulfurization Process. Materials 2019, 12, 3009. [Google Scholar] [CrossRef] [PubMed]
- Juliao, D.; Gomes, A.C.; Cunha-Silva, L.; Valenca, R.; Ribeiro, J.C.; Pillinger, M.; de Castro, B.; Goncalves, I.S.; Balula, S.S. A sustainable peroxophosphomolybdate/H2O2 system for the oxidative removal of organosulfur compounds from simulated and real high-sulfur diesels. Appl. Catal. A-Gen. 2020, 589, 117154. [Google Scholar] [CrossRef]
- Fernandes, S.; Flores, D.; Silva, D.; Santos-Vieira, I.; Mirante, F.; Granadeiro, C.M.; Balula, S.S. Lindqvist@Nanoporous MOF-Based Catalyst for Effective Desulfurization of Fuels. Nanomaterials 2022, 12, 2887. [Google Scholar] [CrossRef]
- Silva, D.F.; Viana, A.M.; Santos-Vieira, I.; Balula, S.S.; Cunha-Silva, L. Ionic Liquid-Based Polyoxometalate Incorporated at ZIF-8: A Sustainable Catalyst to Combine Desulfurization and Denitrogenation Processes. Molecules 2022, 27, 1711. [Google Scholar] [CrossRef]
- Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Debgupta, J.; Singh, C.; Kar, A.; Das, S.K. A Keggin Polyoxometalate Shows Water Oxidation Activity at Neutral pH: POM@ZIF-8, an Efficient and Robust Electrocatalyst. Angew. Chem. Int. Ed. 2018, 57, 1918–1923. [Google Scholar] [CrossRef]
- Ghahramaninezhad, M.; Pakdel, F.; Shahrak, M.N. Boosting oxidative desulfurization of model fuel by POM-grafting ZIF-8 as a novel and efficient catalyst. Polyhedron 2019, 170, 364–372. [Google Scholar] [CrossRef]
- Wang, X.S.; Li, L.; Liang, J.; Huang, Y.B.; Cao, R. Boosting Oxidative Desulfurization of Model and Real Gasoline over Phosphotungstic Acid Encapsulated in Metal-Organic Frameworks: The Window Size Matters. Chemcatchem 2017, 9, 971–979. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Jang, M.-S.; Cho, H.-Y.; Kwon, H.-J.; Kim, S.; Ahn, W.-S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280. [Google Scholar] [CrossRef]
- Zhang, L.; Mi, T.; Ziaee, M.A.; Liang, L.; Wang, R. Hollow POM@MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 2018, 6, 1639–1647. [Google Scholar] [CrossRef]
- Dai, J.; Li, C.; Xiao, S.; Liu, J.; He, J.; Li, J.; Wang, L.; Lei, J. Fabrication of novel ZIF-67 Composite Microspheres for Effective Adsorption and Solid-phase Extraction of Dyes from Water. ChemistrySelect 2018, 3, 5833–5842. [Google Scholar] [CrossRef]
- Adnan, M.; Li, K.; Xu, L.; Yan, Y. X-Shaped ZIF-8 for Immobilization Rhizomucor miehei Lipase via Encapsulation and Its Application toward Biodiesel Production. Catalysts 2018, 8, 96. [Google Scholar] [CrossRef]
- Rocchiccioli-Deltcheff, C.; Aouissi, A.; Bettahar, M.M.; Launay, S.; Fournier, M. Catalysis by 12-Molybdophosphates: 1. Catalytic Reactivity of 12-Molybdophosphoric Acid Related to Its Thermal Behavior Investigated through IR, Raman, Polarographic, and X-ray Diffraction Studies: A Comparison with 12-Molybdosilicic Acid. J. Catal. 1996, 164, 16–27. [Google Scholar] [CrossRef]
- Zhou, K.; Mousavi, B.; Luo, Z.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 2017, 5, 952–957. [Google Scholar] [CrossRef]
- Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B. Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. J. Am. Chem. Soc. 2015, 137, 4920–4923. [Google Scholar] [CrossRef]
- Chang, X.; Yang, X.F.; Qiao, Y.; Wang, S.; Zhang, M.H.; Xu, J.; Wang, D.H.; Bu, X.H. Confined Heteropoly Blues in Defected Zr-MOF (Bottle Around Ship) for High-Efficiency Oxidative Desulfurization. Small 2020, 16, 1906432. [Google Scholar] [CrossRef]
- Wang, C.; Li, A.R.; Ma, Y.L. Phosphomolybdic acid niched in the metal-organic framework UiO-66 with defects: An efficient and stable catalyst for oxidative desulfurization. Fuel Process. Technol. 2021, 212, 106629. [Google Scholar] [CrossRef]
- Jafarinasab, M.; Akbari, A. Co-ZIF-67 encapsulated phosphomolybdic acid as a hybrid catalyst for deep oxidative desulfurization. J. Environ. Chem. Eng. 2021, 9, 106472. [Google Scholar] [CrossRef]
- Wang, C.; Li, A.R.; Ma, Y.L.; Qing, S.L. Preparation of formate-free PMA@MOF-808 catalysts for deep oxidative desulfurization of model fuels. Environ. Sci. Pollut. Res. 2022, 29, 39427–39440. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Lu, L.J.; Zhu, L.H.; Wu, P.W.; Tao, D.J.; Li, X.W.; Gong, J.H.; Chen, L.L.; Chao, Y.H.; Zhu, W.S. Phosphomolybdic acid encapsulated in ZIF-8-based porous ionic liquids for reactive extraction desulfurization of fuels. Inorg. Chem. Front. 2022, 9, 165–178. [Google Scholar] [CrossRef]
- Ji, H.F.; Liu, S.T.; Shi, H.F.; Wang, W.D. Phosphomolybdic acid-based sulfur-containing metal-organic framework as an efficient catalyst for dibenzothiophene oxidative desulfurization. J. Sulfur Chem. 2022, 43, 314–326. [Google Scholar] [CrossRef]
- Zhou, S.S.; He, J.; Wu, P.W.; He, L.W.; Tao, D.J.; Lu, L.J.; Yu, Z.D.; Zhu, L.H.; Chao, Y.H.; Zhu, W.S. Metal-organic framework encapsulated high-loaded phosphomolybdic acid: A highly stable catalyst for oxidative desulfurization of 4,6-dimethyldibenzothiophene. Fuel 2022, 309, 122143. [Google Scholar] [CrossRef]
- Fernandes, S.C.; Viana, A.M.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Synergistic combination of the nanoporous system of MOF-808 with a polyoxomolybdate to design an effective catalyst: Simultaneous oxidative desulfurization and denitrogenation processes. Sustain. Energy Fuels 2021, 5, 4032–4040. [Google Scholar] [CrossRef]
- Mirante, F.; Gomes, N.; Corvo, M.C.; Gago, S.; Balula, S.S. Polyoxomolybdate based ionic-liquids as active catalysts for oxidative desulfurization of simulated diesel. Polyhedron 2019, 170, 762–770. [Google Scholar] [CrossRef]
- Chen, W.; Chen, F.; Zhang, G.; Kong, S.; Cai, W.; Wang, J.; Du, L.; Wu, C. Fast decomposition of hydrogen peroxide by Zeolitic imidazolate framework-67 crystals. Mater. Lett. 2019, 239, 94–97. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | VP (cm3/g) |
---|---|---|
ZIF-8 | 1743 | 0.61 |
ZIF-67 | 1712 | 0.58 |
PMo12@ZIF-8 | 1044 | 0.37 |
PW12@ZIF-8 | 490 | 0.18 |
PMo12@ZIF-67 | 711 | 0.24 |
Catalyst | Sulfur | Temperature (°C) | Time (h) | Oxidant | Efficiency (%) | Reference |
---|---|---|---|---|---|---|
PMo12@NH2-MIL-101 | 1-BT, DBT, 4-MDBT, and 4,6-DMDBT | 50 | 3 | H2O2 | 95 | [44] |
PMo12@UiO-66 c | DBT | 60 | 1 | TBHP | 100 | [38] |
PMo12@UiO-66 | DBT | 60 | 1 | H2O2 | 100 | [39] |
PMo12@MOF-199 | 4,6-DMDBT | 120 | 1.5 | O2 | 90 | [44] |
PMo12@UiO-67 | T d and DBT | 60 | 0.5 | H2O2 | 100 | [11] |
PMo12@ZIF-67 | DBT | 70 | 3 | TBHP | 98 | [40] |
PMo12@MOF-808 | 1-BT, DBT, and 4-MDBT | 70 | 1 | H2O2 | 100 | [45] |
PMo12@MOF-808 | DBT | 50 | 1.5 | H2O2 | 100 | [41] |
PMo12@ZIF-8-PIL a | DBT | r.t. b | 2 | H2O2 | 100 | [42] |
PMo12@DUT-67 | DBT | 50 | 1.5 | H2O2 | 98 | [43] |
PMo12@ZIF-8 | 1-BT, DBT, 4-MDBT, and 4,6-DMDBT | 70 | 2 | H2O2 | 91 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, A.M.; Leonardes, F.; Corvo, M.C.; Balula, S.S.; Cunha-Silva, L. Effective Combination of the Metal Centers in MOF-Based Materials toward Sustainable Oxidation Catalysts. Materials 2023, 16, 3133. https://doi.org/10.3390/ma16083133
Viana AM, Leonardes F, Corvo MC, Balula SS, Cunha-Silva L. Effective Combination of the Metal Centers in MOF-Based Materials toward Sustainable Oxidation Catalysts. Materials. 2023; 16(8):3133. https://doi.org/10.3390/ma16083133
Chicago/Turabian StyleViana, Alexandre M., Francisca Leonardes, Marta C. Corvo, Salete S. Balula, and Luís Cunha-Silva. 2023. "Effective Combination of the Metal Centers in MOF-Based Materials toward Sustainable Oxidation Catalysts" Materials 16, no. 8: 3133. https://doi.org/10.3390/ma16083133