Understanding Interfacial Reactions in Ti–Ni Diffusion Couple
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Three intermetallic compounds in the sequence of Ti2Ni, TiNi, and TiNi3 and two metastable intermetallic compounds including Ti3Ni4 and Ti2Ni3 were formed at the Ti–Ni interface.
- The marker technique and calculating the ratio of intrinsic diffusivities indicated that Ni is the dominant diffusing element.
- The integrated diffusion coefficients, calculated using the Wagner method, were 3.53 × 10−12, 18.1 × 10−15, and 6.2 × 10−15 m2/s for Ti2Ni, TiNi, and TiNi3 at 1173 K, respectively.
- Annealing of the titanium sheet resulted in grain growth, which reduced the contribution of grain boundaries to the overall diffusion and resulted in the reduction. As a result, the integrated diffusion coefficient in the Ti2Ni layer decreased.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, A.; Makhmutov, T.; Razumov, N.; Silin, A.; Popovich, A.; Zhu, J.-N.; Popovich, V. Synthesis of NiTi alloy powders for powder-based additive manufacturing. Mater. Today Proc. 2020, 30, 679–682. [Google Scholar] [CrossRef]
- y Puente, A.P.; Dunand, D. Synthesis of NiTi microtubes via the Kirkendall effect during interdiffusion of Ti-coated Ni wires. Intermetallics 2018, 92, 42–48. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Y.; Tan, C.; Mao, X.; Khanlari, K.; Liu, X. Preparation of Ni–Ti composite powder using radio frequency plasma spheroidization and its laser powder bed fusion densification. Intermetallics 2021, 136, 107273. [Google Scholar] [CrossRef]
- Zou, P.; Zheng, C.; Hu, L.; Wang, H. Rapid Growth of TiNi intermetallic compound within undercooled Ti50Ni50 alloy under electrostatic levitation condition. J. Mater. Sci. Technol. 2021, 77, 82–89. [Google Scholar] [CrossRef]
- Bai, X.; Cai, Q.; Xie, W.; Zeng, Y.; Chu, C.; Zhang, X. In-situ crystalline TiNi thin films deposited by HiPIMS at a low substrate temperature. Surf. Coat. Technol. 2023, 455, 129196. [Google Scholar] [CrossRef]
- Wu, F.; Chen, H.; Yang, Z.; Qiao, J.; Hou, Y.; Yan, R.; Bai, H. Investigation on the electronic structures, elastic and thermodynamic properties of TiNi, Ti2Ni and TiNi3 intermetallic compound. Mater. Today Commun. 2023, 34, 105273. [Google Scholar] [CrossRef]
- Sampath, S.; Vedamanickam, S. Effect of Vanadium on the Microstructure, Transformation Temperatures, and Corrosion Behavior of NiTi Shape Memory Alloys. J. Eng. Mater. Technol. 2023, 145, 011008. [Google Scholar] [CrossRef]
- Balasubramaniyan, C.; Rajkumar, K.; Santosh, S. Enhancement of machining and surface quality of quaternary alloyed NiTiCuZr shape memory alloy through ultrasonic vibration coupled WEDM. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 816–833. [Google Scholar] [CrossRef]
- Parvizi, S.; Hashemi, S.M.; Moein, S. 19—NiTi shape memory alloys: Properties. In Nickel-Titanium Smart Hybrid Materials; Thomas, S., Behera, A., Nguyen, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 399–426. [Google Scholar] [CrossRef]
- Senthilkumar, V.; Velmurugan, C. Spark Plasma Sintering of NiTi Shape Memory Alloy. In Spark Plasma Sintering of Materials; Springer: Berlin/Heidelberg, Germany, 2019; pp. 635–670. [Google Scholar]
- Vojtěch, D.; Michalcová, A.; Čapek, J.; Marek, I.; Dragounová, L. Structural and mechanical stability of the nano-crystalline Ni–Ti (50.9 at.% Ni) shape memory alloy during short-term heat treatments. Intermetallics 2014, 49, 7–13. [Google Scholar] [CrossRef]
- Tajdari, M.; Mehraban, A.G.; Khoogar, A. Shear strength prediction of Ni–Ti alloys manufactured by powder metallurgy using fuzzy rule-based model. Mater. Des. 2010, 31, 1180–1185. [Google Scholar] [CrossRef]
- Tomochika, H.; Kikuchi, H.; Araki, T.; Nishida, M. Fabrication of NiTi intermetallic compound by a reactive gas laser atomization process. Mater. Sci. Eng. A 2003, 356, 122–129. [Google Scholar] [CrossRef]
- Petrović, S.; Peruško, D.; Mitrić, M.; Kovac, J.; Dražić, G.; Gaković, B.; Homewood, K.P.; Milosavljević, M. Formation of intermetallic phase in Ni/Ti multilayer structure by ion implantation and thermal annealing. Intermetallics 2012, 25, 27–33. [Google Scholar] [CrossRef]
- Salvetr, P.; Kubatík, T.F.; Pignol, D.; Novák, P. Fabrication of Ni-Ti alloy by self-propagating high-temperature synthesis and spark plasma sintering technique. Metall. Mater. Trans. B 2017, 48, 772–778. [Google Scholar] [CrossRef]
- Lang, P.; Wojcik, T.; Povoden-Karadeniz, E.; Cirstea, C.D.; Kozeschnik, E. Crystal structure and free energy of Ti2Ni3 precipitates in Ti–Ni alloys from first principles. Comput. Mater. Sci. 2014, 93, 46–49. [Google Scholar] [CrossRef]
- Miyazaki, S.; Otsuka, K. Deformation and transition behavior associated with theR-phase in Ti-Ni alloys. Metall. Trans. A 1986, 17, 53–63. [Google Scholar] [CrossRef]
- Nishida, M.; Honma, T. All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging. Scr. Metall. 1984, 18, 1293–1298. [Google Scholar] [CrossRef]
- Xie, C.; Zhao, L.; Lei, T. Effect of Ti3ni4 precipitates on the phase transitions in an aged Ti-51.8 at% Ni shape memory alloy. Scr. Metall. Mater. 1990, 24, 1753–1758. [Google Scholar] [CrossRef]
- Nomura, K.; Miyazaki, S.; Takei, A. Transformation and deformation behavior of sputter deposited Ti-Ni thin films. In Ecomaterials; Elsevier: Amsterdam, The Netherlands, 1994; pp. 1049–1052. [Google Scholar]
- Bastin, G.; Rieck, G. Diffusion in the titanium-nickel system: I. occurrence and growth of the various intermetallic compounds. Metall. Trans. 1974, 5, 1817–1826. [Google Scholar] [CrossRef]
- Garay, J.; Anselmi-Tamburini, U.; Munir, Z.A. Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater. 2003, 51, 4487–4495. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q.; Sun, D.; Han, X. Co-effect of heat and direct current on growth of intermetallic layers at the interface of Ti–Ni diffusion couples. J. Alloys Compd. 2011, 509, 1201–1205. [Google Scholar] [CrossRef]
- Hinotani, S.; Ohmori, Y. The microstructure of diffusion-bonded Ti/Ni interface. Trans. Jpn. Inst. Met. 1988, 29, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Xue, Y.; Shi, F. Intermetallic formation and mechanical properties of Ni-Ti diffusion couples. Mater. Des. 2017, 130, 175–182. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Prangnell, P.; Robson, J. Modeling of intermetallic compounds growth between dissimilar metals. Metall. Mater. Trans. A 2015, 46, 4106–4114. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Niu, P.; Deng, S.; Yuan, T.; Liu, G. Diffusivity of Ti-Ni Diffusion Couple Enhanced by Pulse Current During Spark Plasma Sintering. Metall. Mater. Trans. B 2020, 51, 6–10. [Google Scholar] [CrossRef]
- Shao, X.; Guo, X.; Han, Y.; Lin, Z.; Qin, J.; Lu, W.; Zhang, D. Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti–Ni systems. J. Mater. Res. 2014, 29, 2707–2716. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, G.; Wu, X.; Li, C. Formation characteristics of Ni/Ti intermetallics through annealing of layered Ni/Ti. Trans. China Weld. Inst. 2010, 31, 41–44. [Google Scholar]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Liu, J.; Su, Y.; Xu, Y.; Luo, L.; Guo, J.; Fu, H. First phase selection in solid Ti/Al diffusion couple. Rare Met. Mater. Eng. 2011, 40, 753–756. [Google Scholar] [CrossRef]
- Benedictus, R.; Böttger, A.; Mittemeijer, E. Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Phys. Rev. B 1996, 54, 9109. [Google Scholar] [CrossRef] [Green Version]
- Miedema, A.; De Chatel, P.; De Boer, F. Cohesion in alloys—Fundamentals of a semi-empirical model. Phys. B+C 1980, 100, 1–28. [Google Scholar] [CrossRef]
- Van Loo, F. Multiphase diffusion in binary and ternary solid-state systems. Prog. Solid State Chem. 1990, 20, 47–99. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S.V. Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Paul, A.; Divinski, S. Diffusion Fundamentals and Techniques. In Handbook of Solid State Diffusion; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1. [Google Scholar]
- Buscaglia, V.; Anselmi-Tamburini, U. On the diffusional growth of compounds with narrow homogeneity range in multiphase binary systems. Acta Mater. 2002, 50, 525–535. [Google Scholar] [CrossRef]
- Dybkov, V.I. Regularities of Reactive Diffusion and Phase Formation in Ni―Bi, Ni―Zn, and Co―Zn Binary Systems. Powder Metall. Met. Ceram. 2001, 40, 426–431. [Google Scholar] [CrossRef]
- Wagner, C. The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems. Acta Metall. 1969, 17, 99–107. [Google Scholar] [CrossRef]
- Babaei-Dehkordi, A.; Soltanieh, M.; Mirjalili, M.; Mostafaei, A. Quantitative analysis of diffusion kinetics of intermetallic formation in Ni–Ti system. J. Mater. Res. Technol. 2022, 20, 4545–4555. [Google Scholar] [CrossRef]
- Brennan, S.; Bermudez, K.; Kulkarni, N.S.; Sohn, Y. Interdiffusion in the Mg-Al system and intrinsic diffusion in β-Mg2Al3. Metall. Mater. Trans. A 2012, 43, 4043–4052. [Google Scholar] [CrossRef]
- Jaseliunaite, J.; Galdikas, A. Kinetic modeling of grain boundary diffusion: The influence of grain size and surface processes. Materials 2020, 13, 1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phases | Surface Energy γ (AB) (mJ/m2) | Interface Energy γ (Ti-AB) (mJ/m2) | Interface Energy γ (Ni-AB) (mJ/m2) | Increasing Interface Energy (mJ/m2) |
---|---|---|---|---|
Ti3Ni4 | 2222.4 | 328.8 | 455.7 | 891.0 |
Ti2Ni3 | 2220.6 | 305.0 | 274.6 | 686.1 |
TiNi3 | 2185.1 | 169.6 | 416.3 | 692.2 |
Ti2Ni | 2191.2 | 498.0 | 42.8 | 647.5 |
TiNi | 2220.9 | 382.5 | 185.4 | 674.1 |
Phase, j | Ti | Ti2Ni | TiNi | TiNi3 | Ni |
---|---|---|---|---|---|
Thickness, μm | - | 1391 | 11 | 6 | - |
Ni Mole fraction, NNi | 0.03 | 0.32 | 0.49 | 0.74 | 1 |
Ti Mole fraction, NTi | 0.97 | 0.68 | 0.51 | 0.26 | 0 |
Molar volume (Vj, cm3) | - | 9 | 8.2 | 7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babaei-Dehkordi, A.; Soltanieh, M.; Mirjalili, M.; Asherloo, M.; Mostafaei, A. Understanding Interfacial Reactions in Ti–Ni Diffusion Couple. Materials 2023, 16, 2267. https://doi.org/10.3390/ma16062267
Babaei-Dehkordi A, Soltanieh M, Mirjalili M, Asherloo M, Mostafaei A. Understanding Interfacial Reactions in Ti–Ni Diffusion Couple. Materials. 2023; 16(6):2267. https://doi.org/10.3390/ma16062267
Chicago/Turabian StyleBabaei-Dehkordi, Amin, Mansour Soltanieh, Mostafa Mirjalili, Mohammadreza Asherloo, and Amir Mostafaei. 2023. "Understanding Interfacial Reactions in Ti–Ni Diffusion Couple" Materials 16, no. 6: 2267. https://doi.org/10.3390/ma16062267