Structural Insights into Layered Tetrahalocuprates(II) Based on Small Unsaturated and Cyclic Primary Ammonium Cations
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Alkylammonium Halogenides
2.2. Crystallization of Tetrachlorocuprate(II) Salts from Solution
2.3. Mechanochemical Synthesis
2.4. FTIR Spectroscopy
2.5. Single-Crystal X-ray Diffraction (SCXRD)
2.6. Powder X-ray Diffraction
2.7. Thermal Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babu, R.; Giribabu, L.; Singh, S.P. Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Cryst. Growth Des. 2018, 18, 2645–2664. [Google Scholar] [CrossRef]
- Privitera, A.; Righetto, M.; Cacialli, F.; Riede, M.K. Perspectives of Organic and Perovskite-Based Spintronics. Adv. Opt. Mater. 2021, 9, 2100215. [Google Scholar] [CrossRef]
- Wang, G.; Mei, S.; Liao, J.; Wang, W.; Tang, Y.; Zhang, Q.; Tang, Z.; Wu, B.; Xing, G. Advances of Nonlinear Photonics in Low-Dimensional Halide Perovskites. Small 2021, 17, 2100809. [Google Scholar] [CrossRef]
- Wang, Y.; Song, L.; Chen, Y.; Huang, W. Emerging New-Generation Photodetectors Based on Low-Dimensional Halide Perovskites. ACS Photonics 2020, 7, 10–28. [Google Scholar] [CrossRef]
- Stylianakis, M.; Maksudov, T.; Panagiotopoulos, A.; Kakavelakis, G.; Petridis, K. Inorganic and Hybrid Perovskite Based Laser Devices: A Review. Materials 2019, 12, 859. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B. Low-Dimensional Organometal Halide Perovskites. ACS Energy Lett. 2018, 3, 54–62. [Google Scholar] [CrossRef]
- Zhou, C.; Lin, H.; He, Q.; Xu, L.; Worku, M.; Chaaban, M.; Lee, S.; Shi, X.; Du, M.-H.; Ma, B. Low Dimensional Metal Halide Perovskites and Hybrids. Mater. Sci. Eng. R Rep. 2019, 137, 38–65. [Google Scholar] [CrossRef]
- Mao, L.; Stoumpos, C.C.; Kanatzidis, M.G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J. Am. Chem. Soc. 2019, 141, 1171–1190. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Mohammed, O.F.; Bakr, O.M. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Lett. 2017, 2, 889–896. [Google Scholar] [CrossRef]
- Pedesseau, L.; Sapori, D.; Traore, B.; Robles, R.; Fang, H.-H.; Loi, M.A.; Tsai, H.; Nie, W.; Blancon, J.-C.; Neukirch, A.; et al. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. ACS Nano 2016, 10, 9776–9786. [Google Scholar] [CrossRef]
- Jin, C.; Li, F.; Yang, Z.; Pan, S.; Mutailipu, M. [C3N6H7]2 [B3O3F4(OH)]: A New Hybrid Birefringent Crystal with Strong Optical Anisotropy Induced by Mixed Functional Units. J. Mater. Chem. C Mater. 2022, 10, 6590–6595. [Google Scholar] [CrossRef]
- Jin, C.; Zeng, H.; Zhang, F.; Qiu, H.; Yang, Z.; Mutailipu, M.; Pan, S. Guanidinium Fluorooxoborates as Efficient Metal-Free Short-Wavelength Nonlinear Optical Crystals. Chem. Mater. 2022, 34, 440–450. [Google Scholar] [CrossRef]
- Marchenko, E.I.; Fateev, S.A.; Petrov, A.A.; Korolev, V.V.; Mitrofanov, A.; Petrov, A.V.; Goodilin, E.A.; Tarasov, A.B. Database of Two-Dimensional Hybrid Perovskite Materials: Open-Access Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning. Chem. Mater. 2020, 32, 7383–7388. [Google Scholar] [CrossRef]
- Burger, S.; Ehrenreich, M.G.; Kieslich, G. Tolerance Factors of Hybrid Organic–Inorganic Perovskites: Recent Improvements and Current State of Research. J. Mater. Chem. A Mater. 2018, 6, 21785–21793. [Google Scholar] [CrossRef]
- McNulty, J.A.; Lightfoot, P. Structural Chemistry of Layered Lead Halide Perovskites Containing Single Octahedral Layers. IUCrJ 2021, 8, 485–513. [Google Scholar] [CrossRef]
- Ning, W.; Gao, F. Structural and Functional Diversity in Lead-Free Halide Perovskite Materials. Adv. Mater. 2019, 31, 1900326. [Google Scholar] [CrossRef]
- Sani, F.; Shafie, S.; Lim, H.; Musa, A. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review. Materials 2018, 11, 1008. [Google Scholar] [CrossRef]
- Šenjug, P.; Dragović, J.; Kalanj, M.; Torić, F.; Rubčić, M.; Pajić, D. Magnetic Behaviour of (C2H5NH3)2CuCl4 Type Multiferroic. J. Magn. Magn. Mater. 2019, 479, 144–148. [Google Scholar] [CrossRef]
- Han, C.; Bradford, A.J.; McNulty, J.A.; Zhang, W.; Halasyamani, P.S.; Slawin, A.M.Z.; Morrison, F.D.; Lee, S.L.; Lightfoot, P. Polarity and Ferromagnetism in Two-Dimensional Hybrid Copper Perovskites with Chlorinated Aromatic Spacers. Chem. Mater. 2022, 34, 2458–2467. [Google Scholar] [CrossRef]
- Han, C.; McNulty, J.A.; Bradford, A.J.; Slawin, A.M.Z.; Morrison, F.D.; Lee, S.L.; Lightfoot, P. Polar Ferromagnet Induced by Fluorine Positioning in Isomeric Layered Copper Halide Perovskites. Inorg. Chem. 2022, 61, 3230–3239. [Google Scholar] [CrossRef]
- Sun, B.; Liu, X.-F.; Li, X.-Y.; Zhang, Y.; Shao, X.; Yang, D.; Zhang, H.-L. Two-Dimensional Perovskite Chiral Ferromagnets. Chem. Mater. 2020, 32, 8914–8920. [Google Scholar] [CrossRef]
- Bloomquist, D.R.; Willett, R.D. Thermochromic Phase Transitions in Transition Metal Salts. Coord. Chem. Rev. 1982, 47, 125–164. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Sinha Ray, M.; Dey, R.; Righi, L.; Bocelli, G.; Ghosh, A. Synthesis, Crystal Structure and Thermochromism of Benzimidazolium Tetrachlorocuprate: (C7H7N2)2[CuCl4]. Polyhedron 2002, 21, 2561–2565. [Google Scholar] [CrossRef]
- Willett, R.D.; Haugen, J.A.; Lebsack, J.; Morrey, J. Thermochromism in Copper(II) Chlorides. Coordination Geometry Changes in Tetrachlorocuprate(2-)Anions. Inorg. Chem. 1974, 13, 2510–2513. [Google Scholar] [CrossRef]
- Fu, H.; Jiang, C.; Luo, C.; Lin, H.; Peng, H. A Quasi-Two-Dimensional Copper Based Organic-Inorganic Hybrid Perovskite with Reversible Thermochromism and Ferromagnetism. Eur. J. Inorg. Chem. 2021, 2021, 4984–4989. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, T.; Singh, A.K. Suppression of Jahn–Teller Distortions and Origin of Piezochromism and Thermochromism in Cu–Cl Hybrid Perovskite. Inorg. Chem. 2016, 55, 6817–6824. [Google Scholar] [CrossRef]
- Dutta, S.; Vishnu, S.K.D.; Som, S.; Chaurasiya, R.; Patel, D.K.; Moovendaran, K.; Lin, C.-C.; Chen, C.-W.; Sankar, R. Segmented Highly Reversible Thermochromic Layered Perovskite [(CH2)2 (NH3)2]CuCl4 Crystal Coupled with an Inverse Magnetocaloric Effect. ACS Appl. Electron. Mater. 2022, 4, 521–530. [Google Scholar] [CrossRef]
- Lufaso, M.W.; Woodward, P.M. Jahn–Teller Distortions, Cation Ordering and Octahedral Tilting in Perovskites. Acta Crystallogr. B 2004, 60, 10–20. [Google Scholar] [CrossRef]
- Freeman, J.H.; Smith, M.L. The Preparation of Anhydrous Inorganic Chlorides by Dehydration with Thionyl Chloride. J. Inorg. Nucl. Chem. 1958, 7, 224–227. [Google Scholar] [CrossRef]
- Hercouet, A.; le Corre, M. Triphenylphosphonium Bromide: A Convenient and Quantitative Source of Gaseous Hydrogen Bromide. Synthesis 1988, 1988, 157–158. [Google Scholar] [CrossRef]
- CrysAlisPro, Version 171.42.49; Agilent Technologies: Oxford, UK, 2022.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A Found Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Evans, J.S.O. Advanced Input Files & Parametric Quantitative Analysis Using Topas. Mater. Sci. Forum. 2010, 651, 1–9. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A. A Fundamental Parameters Approach to X-Ray Line-Profile Fitting. J. Appl. Cryst. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Harris, K.D.M. Circumventing a Challenging Aspect of Crystal Structure Determination from Powder Diffraction Data. Acta Cryst. B Struct. Sci. Cryst. Eng. Mater. 2022, 78, 96–99. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470405840. [Google Scholar]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Long, G.S.; Wei, M.; Willett, R.D. Crystal Structures and Magnetic Properties of a Novel Layer Perovskite System: (3-Picoliniumylammonium)CuX4 (X = Cl, Br). Inorg. Chem. 1997, 36, 3102–3107. [Google Scholar] [CrossRef]
- Willett, R.; Place, H.; Middleton, M. Crystal Structures of Three New Copper(II) Halide Layered Perovskites: Structural, Crystallographic, and Magnetic Correlations. J. Am. Chem. Soc. 1988, 110, 8639–8650. [Google Scholar] [CrossRef]
- Akrout, F.; Hajlaoui, F.; Karoui, K.; Audebrand, N.; Roisnel, T.; Zouari, N. Two-Dimensional Copper (II) Halide-Based Hybrid Perovskite Templated by 2-Chloroethylammonium: Crystal Structures, Phase Transitions, Optical and Electrical Properties. J. Solid State Chem. 2020, 287, 121338. [Google Scholar] [CrossRef]
- Takahashi, M.; Hoshino, N.; Sambe, K.; Takeda, T.; Akutagawa, T. Dynamics of Chiral Cations in Two-Dimensional CuX 4 and PbX 4 Perovskites (X = Cl and Br). Inorg. Chem. 2020, 59, 11606–11615. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Teng, B.; Han, S.; Yang, T.; Li, Y.; Liu, Y.; Zhang, X.; Liu, X.; Luo, J.; Sun, Z. Near-Room-Temperature Tunable Dielectric Response Induced by Dual Phase Transitions in a Lead-Free Hybrid: (C3H8N)2 SbBr5. CrystEngComm 2019, 21, 3740–3744. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Su, C.-Y.; Gao, J.-X.; Zhang, T.; Fu, D.-W. Mechanochemistry Enables Optical-Electrical Multifunctional Response and Tunability in Two-Dimensional Hybrid Perovskites. Sci. China Mater. 2021, 64, 706–716. [Google Scholar] [CrossRef]
- Han, S.; Liu, X.; Zhang, J.; Ji, C.; Wu, Z.; Tao, K.; Wang, Y.; Sun, Z.; Luo, J. Dielectric Phase Transition Triggered by the Order–Disorder Transformation of Cyclopropylamine in a Layered Organic–Inorganic Halide Perovskite. J. Mater. Chem. C Mater. 2018, 6, 10327–10331. [Google Scholar] [CrossRef]
- Yang, T.; Teng, B.; Han, S.; Li, M.; Xu, Z.; Li, Y.; Liu, Y.; Luo, J.; Sun, Z. Structural Phase Transition and Dielectric Anisotropy Properties of a Lead-Free Organic–Inorganic Hybrid. Inorg. Chem. Front. 2019, 6, 1761–1766. [Google Scholar] [CrossRef]
- Seeboth, A.; Ruhmann, R.; Mühling, O. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control. Materials 2010, 3, 5143–5168. [Google Scholar] [CrossRef]
- Zeng, Y.; Huang, X.; Huang, C.; Zhang, H.; Wang, F.; Wang, Z. Unprecedented 2D Homochiral Hybrid Lead-Iodide Perovskite Thermochromic Ferroelectrics with Ferroelastic Switching. Angew. Chem. Int. Ed. 2021, 60, 10730–10735. [Google Scholar] [CrossRef]
- Sun, B.; Liu, X.; Li, X.; Cao, Y.; Yan, Z.; Fu, L.; Tang, N.; Wang, Q.; Shao, X.; Yang, D.; et al. Reversible Thermochromism and Strong Ferromagnetism in Two-Dimensional Hybrid Perovskites. Angew. Chem. Int. Ed. 2020, 59, 203–208. [Google Scholar] [CrossRef]
- Pareja-Rivera, C.; Solis-Ibarra, D. Reversible and Irreversible Thermochromism in Copper-Based Halide Perovskites. Adv. Opt. Mater. 2021, 9, 2100633. [Google Scholar] [CrossRef]
(Cu-Cu)ip/Å | (Cu-X)eq/Å | (Cu-X)ax/Å | /% | LSF t1, t2 | |
---|---|---|---|---|---|
(aa)2CuCl4 | 5.27 | 2.35, 2.93 | 2.29 | 1.46 | 0.43, 0.44 |
(aacn)2CuCl4 | 5.13 | 2.29, 2.87 | 2.30 | 1.21 | 0.47, 0.47 |
(cpma)2CuCl4 | 5.22 | 2.28, 2.98 | 2.31 | 1.72 | 0.46, 0.49 |
(cpa)2CuCl4 | 5.25 | 2.29, 3.01 | 2.29 | 1.88 | 0.4, 0.42 |
(aa)2CuBr4 | 5.43 ** | 2.46, 2.98 ** | 2.33 | 1.37 | 0.28, 0.48 |
(aacn)2CuBr4 | 5.61 | 2.49, 3.20 | 2.43 | 2.02 | 0.28, 0.38 |
(cpma)2CuBr4 | 5.57 ** | 2.46, 3.19 ** | 2.40 | 2.10 | 0.49, 0.50 |
(cpa)2CuBr4 | 5.62 | 2.48, 3.20 | 2.44 | 2.02 | 0.5, 0.5 * |
d(Cu-Cu)oop/Å | Cation Penetration/Å | ∠(C-Nam-Layer)/° | ρcryst/g cm−3 | |
---|---|---|---|---|
(aa)2CuCl4 | a/2, 12.05 | 0.37 | 52 | 1.600 |
(aacn)2CuCl4 | c/2, 10.93 | 0.07 | 24 | 1.846 |
(cpma)2CuCl4 | a/2, 13.39 | 0.20 | 38 | 1.597 |
(cpa)2CuCl4 | a/2, 11.21 | 0.19 | 21 | 1.734 |
(aa)2CuBr4 | a, 12.49 | 0.08, 0.59 | 48, 28 | 2.344 |
(aacn)2CuBr4 | a, 10.08 | 0.08 | 71 | 2.735 |
(cpma)2CuBr4 | c/2, 13.00 | 0.13 | 28 | 2.089 |
(cpa)2CuBr4 | c/2, 10.93 | 0.01 | 23 | 2.326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topić, E.; Rubčić, M. Structural Insights into Layered Tetrahalocuprates(II) Based on Small Unsaturated and Cyclic Primary Ammonium Cations. Materials 2023, 16, 2236. https://doi.org/10.3390/ma16062236
Topić E, Rubčić M. Structural Insights into Layered Tetrahalocuprates(II) Based on Small Unsaturated and Cyclic Primary Ammonium Cations. Materials. 2023; 16(6):2236. https://doi.org/10.3390/ma16062236
Chicago/Turabian StyleTopić, Edi, and Mirta Rubčić. 2023. "Structural Insights into Layered Tetrahalocuprates(II) Based on Small Unsaturated and Cyclic Primary Ammonium Cations" Materials 16, no. 6: 2236. https://doi.org/10.3390/ma16062236
APA StyleTopić, E., & Rubčić, M. (2023). Structural Insights into Layered Tetrahalocuprates(II) Based on Small Unsaturated and Cyclic Primary Ammonium Cations. Materials, 16(6), 2236. https://doi.org/10.3390/ma16062236