Experimental and Analytical Investigation of Flexural Behavior of Carbon Nanotube Reinforced Textile Based Composites
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Tensile Tests
2.3. Bending Tests
3. Analytical Formulation
4. Results
4.1. Tension Test Results
4.2. Bending Test Results
5. Conclusions
- Small CNT concentrations can significantly change the mechanical behavior of composites. Lower CNT weight fractions have resulted in a significant improvement.
- The flexural and tensile strength was improved in the presence of CNTs, proving that they can be utilized as a support material. In other words, the flexural strength and flexural modulus increase when 0.3% by weight of MWCNT is added. This positive effect can be explained by the fact that carbon nanotubes prevent crack opening and propagation by bridging cracks during fracture. By producing nanocomposites and examining their mechanical properties, Zheng et al. [51] obtained similar results to this study. Firstly, they examined the effects of nanoparticles on the epoxy matrix and found different reinforcements by weight. The best increase in the composites they prepared was at 0.3%; the tensile strength, tensile modulus and impact strength with the addition of nanoparticles obtained were 115%, 13% and 60%, respectively. One-way glass fiber reinforced polymer produced a 69.4% increase in flexural strength, tensile modulus and strength; an increase of 21% and 23% was determined, respectively. In this study, adding 0.3% by weight of MWCNT increased the tensile strength and tensile modulus by approximately 11% and 12%, respectively.
- For upcoming applications requiring high mechanical performance, CFRP composites loaded with MWCNTs are anticipated to be quite promising, given the increases in the samples’ flexural modulus and strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madenci, E.; Özkılıç, Y.O.; Aksoylu, C.; Asyraf, M.R.M.; Syamsir, A.; Supian, A.B.M.; Mamaev, N. Buckling Analysis of CNT-Reinforced Polymer Composite Beam Using Experimental and Analytical Methods. Materials 2023, 16, 614. [Google Scholar] [CrossRef] [PubMed]
- Madenci, E.; Özütok, A. Variational approximate for high order bending analysis of laminated composite plates. Struct. Eng. Mech. 2020, 73, 97–108. [Google Scholar]
- Aribas, U.N.; Ermis, M.; Eratli, N.; Omurtag, M.H. The static and dynamic analyses of warping included composite exact conical helix by mixed FEM. Compos. Part B Eng. 2019, 160, 285–297. [Google Scholar] [CrossRef]
- Aribas, U.N.; Ermis, M.; Kutlu, A.; Eratli, N.; Omurtag, M.H. Forced vibration analysis of composite-geometrically exact elliptical cone helices via mixed FEM. Mech. Adv. Mater. Struct. 2022, 29, 1456–1474. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Madenci, E.; Özkılıç, Y.O.; Aksoylu, C.; Razman, M.R.; Ramli, Z.; Zakaria, S.Z.S.; Khan, K. Creep Properties and Analysis of Cross Arms’ Materials and Structures in Latticed Transmission Towers: Current Progress and Future Perspectives. Materials 2023, 16, 1747. [Google Scholar] [CrossRef]
- Vedernikov, A.; Gemi, L.; Madenci, E.; Özkılıç, Y.O.; Yazman, Ş.; Gusev, S.; Sulimov, A.; Bondareva, J.; Evlashin, S.; Konev, S.; et al. Effects of high pulling speeds on mechanical properties and morphology of pultruded GFRP composite flat laminates. Compos. Struct. 2022, 301, 116216. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’Makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’Nik, A.; Özkılıç, Y.O.; Aksoylu, C. Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers. Appl. Sci. 2022, 12, 11734. [Google Scholar] [CrossRef]
- Aksoylu, C.; Özkılıç, Y.O.; Madenci, E.; Safonov, A. Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings. Polymers 2022, 14, 4095. [Google Scholar] [CrossRef]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Analysis of Spring-in Deformation in L-shaped Profiles Pultruded at Different Pulling Speeds: Mathematical Simulation and Experimental Results. In Proceedings of the 24th International Conference on Material Forming, Liège, Belgium, 4–16 April 2021. [Google Scholar]
- Ozkilic, Y.O.; Gemi, L.; Madenci, E.; Aksoylu, C.; Kalkan, I. Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement. Steel Compos. Struct. 2022, 45, 193–204. [Google Scholar]
- Madenci, E.; Özkılıç, Y.O.; Aksoylu, C.; Safonov, A. The effects of eccentric web openings on the compressive performance of pultruded GFRP boxes wrapped with GFRP and CFRP sheets. Polymers 2022, 14, 4567. [Google Scholar] [CrossRef]
- Vedernikov, A.N.; Safonov, A.A.; Gusev, S.A.; Carlone, P.; Tucci, F.; Akhatov, I.S. Spring-In Experimental Evaluation of L-Shaped Pultruded Profiles, 1st ed.; IOP Publishing: Bristol, UK, 2020; p. 012013. [Google Scholar]
- Özkılıç, Y.O.; Gemi, L.; Madenci, E.; Aksoylu, C. Effects of stirrup spacing on shear performance of hybrid composite beams produced by pultruded GFRP profile infilled with reinforced concrete. Arch. Civ. Mech. Eng. 2023, 23, 36. [Google Scholar] [CrossRef]
- Gemi, L.; Madenci, E.; Özkılıç, Y.O.; Yazman, Ş.; Safonov, A. Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams. Polymers 2022, 14, 3740. [Google Scholar] [CrossRef] [PubMed]
- Gemi, L.; Alsdudi, M.; Aksoylu, C.; Yazman, Ş.; Özkılıç, Y.O.; Arslan, M.H. Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams. Steel Compos. Struct. 2022, 43, 735–757. [Google Scholar]
- Arslan, M.H.; Yazman, Ş.; Hamad, A.A.; Aksoylu, C.; Özkılıç, Y.O.; Gemi, L. Shear Strengthening of Reinforced Concrete T-Beams with Anchored and Non-Anchored CFRP Fabrics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 527–542. [Google Scholar]
- Liew, K.; Lei, Z.; Zhang, L. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Compos. Struct. 2015, 120, 90–97. [Google Scholar] [CrossRef]
- Esawi, A.M.; Farag, M.M. Carbon nanotube reinforced composites: Potential and current challenges. Mater. Des. 2007, 28, 2394–2401. [Google Scholar] [CrossRef]
- Cho, J.-R.; Ahn, Y.-J. Investigation of mechanical behaviors of functionally graded CNT-reinforced composite plates. Polymers 2022, 14, 2664. [Google Scholar] [CrossRef]
- Wu, H.L.; Yang, J.; Kitipornchai, S. Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Thin-Walled Struct. 2016, 108, 225–233. [Google Scholar] [CrossRef]
- Cheshmeh, E.; Karbon, M.; Eyvazian, A.; Jung Dw Habibi, M.; Safarpour, M. Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory. Mech. Based Des. Struct. Mach. 2022, 50, 1137–1160. [Google Scholar] [CrossRef]
- Zhong, R.; Wang, Q.; Tang, J.; Shuai, C.; Qin, B. Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos. Struct. 2018, 194, 49–67. [Google Scholar] [CrossRef]
- Ghassabi, M.; Talebitooti, R. Acoustic insulation characteristics improvement of a thick CNT-reinforced doubly-curved shell by using GPLRC and MEE composite layers. Smart Mater. Struct. 2023, 32, 035004. [Google Scholar] [CrossRef]
- Wattanasakulpong, N.; Ungbhakorn, V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 2013, 71, 201–208. [Google Scholar] [CrossRef]
- Mehar, K.; Panda, S. Free Vibration and Bending Behaviour of CNT Reinforced Composite Plate Using Different Shear Deformation Theory; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; p. 012014. [Google Scholar]
- Shen, H.-S. Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Compos. Struct. 2014, 116, 477–488. [Google Scholar] [CrossRef]
- Cho, J.; Kim, H. Optimal Tailoring of CNT Distribution in Functionally Graded Porous CNTRC Beams. Polymers 2023, 15, 349. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Bouazza, M.; Zenkour, A.M. Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch. Appl. Mech. 2020, 90, 1755–1769. [Google Scholar] [CrossRef]
- Tounsi, A.; Benguediab, S.; Semmah, A.; Zidour, M. Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 2013, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Tornabene, F.; Fantuzzi, N.; Bacciocchi, M. Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Compos. Part B Eng. 2017, 115, 449–476. [Google Scholar] [CrossRef]
- Kumar, P.; Srinivas, J. Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layer-wise formulation. Compos. Struct. 2017, 177, 158–170. [Google Scholar] [CrossRef]
- Sun, C.; Li, F.; Cheng, H.; Lu, G. Axial Young’s modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter Scales. Appl. Phys. Lett. 2005, 87, 193101. [Google Scholar] [CrossRef] [Green Version]
- Seidel, G.D.; Lagoudas, D.C. Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 2006, 38, 884–907. [Google Scholar] [CrossRef]
- Qian, D.; Dickey, E.C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868–2870. [Google Scholar] [CrossRef] [Green Version]
- Ghandehari, M.A.; Masoodi, A.R.; Panda, S.K. Thermal Frequency Analysis of Double CNT-Reinforced Polymeric Straight Beam. J. Vib. Eng. Technol. 2023, 1–17. [Google Scholar] [CrossRef]
- Zhu, P.; Lei, Z.X.; Liew, K.M. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 2012, 94, 1450–1460. [Google Scholar] [CrossRef]
- Sharma, A.; Joshi, S.C. Enhancement in Fatigue Performance of FRP composites with various fillers: A review. Compos. Struct. 2023, 309, 116724. [Google Scholar] [CrossRef]
- Mahmoud Zaghloul, M.Y.; Yousry Zaghloul, M.M.; Yousry Zaghloul, M.M. Developments in polyester composite materials—An in-depth review on natural fibres and nano fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Lafdi, K.; El Moumen, A. Mechanical properties of carbon nanotubes based polymer composites. Compos. Part B Eng. 2016, 103, 113–121. [Google Scholar] [CrossRef]
- Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.-F.; Ruoff, R.S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533. [Google Scholar] [CrossRef]
- Shivakumar Gouda, P.; Kulkarni, R.; Kurbet, S.; Jawali, D. Effects of multi walled carbon nanotubes and graphene on the mechanical properties of hybrid polymer composites. Adv. Mater. Lett. 2013, 4, 261–270. [Google Scholar] [CrossRef]
- Lee, H.; Mall, S.; He, P.; Shi, D.; Narasimhadevara, S.; Yun, Y.-H.; Shanov, V.; Schulz, M.J. Characterization of carbon nanotube/nanofiber-reinforced polymer composites using an instrumented indentation technique. Compos. Part B Eng. 2007, 38, 58–65. [Google Scholar] [CrossRef]
- Makvandi, R.; Öchsner, A. A refined analysis of the influence of the carbon nanotube distribution on the macroscopic stiffness of composites. Comput. Mater. Sci. 2013, 77, 189–193. [Google Scholar] [CrossRef]
- Madenci, E. Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM. Steel Compos. Struct. 2021, 39, 493. [Google Scholar]
- Vinyas, M. Nonlinear deflection of carbon nanotube reinforced multiphase magneto-electro-elastic plates in thermal environment considering pyrocoupling effects. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Mehrabadi, S.J.; Aragh, B.S.; Khoshkhahesh, V.; Taherpour, A. Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes. Compos. Part B Eng. 2012, 43, 2031–2040. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y. Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 2014, 38, 3741–3754. [Google Scholar] [CrossRef]
- Di Sciuva, M.; Sorrenti, M. Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory. Compos. Struct. 2019, 227, 111324. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Zheng, Y.; Ning, R.; Zheng, Y. Study of SiO2 nanoparticles on the improved performance of epoxy and fiber composites. J. Reinf. Plast. Compos. 2005, 24, 223–233. [Google Scholar] [CrossRef]
Parameters | Carbon Fiber | Epoxy Matrix | CNT | |
---|---|---|---|---|
E11 (GPa) | 230 | 2.72 | E (GPa) | 500 |
E22 (GPa) | 15 | 2.72 | v | 0.26 |
E33 (GPa) | 15 | 2.72 | t (nm) | 0.34 |
v12 | 0.28 | 0.3 | l (m) | 25 × 10−6 |
v13 | 0.28 | 0.3 | d (nm) | 1.4 |
v23 | 0.28 | 0.3 | ρ (kg/m3) | 1350 |
G12 (GPa) | 15 | 1.18 | ||
G13 (GPa) | 15 | 1.18 | ||
G23 (GPa) | 15 | 1.18 |
Sample | Maximum Stress (MPa) | Rate of Increase (%) | Maximum Displacement (mm) |
---|---|---|---|
NEAT1 | 552 | ⸻ | 7.49 |
NEAT2 | 563 | ⸻ | 7.41 |
NEAT3 | 576 | ⸻ | 7.41 |
CNT1 | 596 | 5.7% | 7.41 |
CNT2 | 614 | 8.8% | 7.40 |
CNT3 | 626 | 11.1% | 7.40 |
Sample | Maximum Load (N) | Rate of Increase (%) | Displacement at Maximum Load (mm) | Rigidity at Maximum Load (N/mm) |
---|---|---|---|---|
NEAT1 | 752 | ⸻ | 3.57 | 210.66 |
NEAT2 | 849 | ⸻ | 4.27 | 198.86 |
NEAT3 | 814 | ⸻ | 4.06 | 200.62 |
CNT1 | 1020 | 35.6, 20.1 and 25.3 | 4.75 | 214.74 |
CNT2 | 956 | 27.1, 12.6 and 17.4 | 4.41 | 216.80 |
CNT3 | 998 | 32.7, 17.5 and 22.6 | 4.59 | 217.54 |
Sample | Young’s Moduli (GPa) | Error (%) | |
---|---|---|---|
Experimental | Analytical | ||
0.0%wt CNT | 13.18 ± 0.21 | 14.48 | 9% |
0.3%wt CNT | 14.42 ± 0.14 | 16.18 | 12% |
Sample | Displacements (mm) | Error(%) | |
---|---|---|---|
Experimental | Analytical | ||
0.0%wt CNT | 3.96 ± 0.29 | 4.10 | 4% |
0.3%wt CNT | 4.58 ± 0.14 | 4.63 | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madenci, E.; Özkılıç, Y.O.; Aksoylu, C.; Asyraf, M.R.M.; Syamsir, A.; Supian, A.B.M.; Elizaveta, B. Experimental and Analytical Investigation of Flexural Behavior of Carbon Nanotube Reinforced Textile Based Composites. Materials 2023, 16, 2222. https://doi.org/10.3390/ma16062222
Madenci E, Özkılıç YO, Aksoylu C, Asyraf MRM, Syamsir A, Supian ABM, Elizaveta B. Experimental and Analytical Investigation of Flexural Behavior of Carbon Nanotube Reinforced Textile Based Composites. Materials. 2023; 16(6):2222. https://doi.org/10.3390/ma16062222
Chicago/Turabian StyleMadenci, Emrah, Yasin Onuralp Özkılıç, Ceyhun Aksoylu, Muhammad Rizal Muhammad Asyraf, Agusril Syamsir, Abu Bakar Mohd Supian, and Bobrynina Elizaveta. 2023. "Experimental and Analytical Investigation of Flexural Behavior of Carbon Nanotube Reinforced Textile Based Composites" Materials 16, no. 6: 2222. https://doi.org/10.3390/ma16062222
APA StyleMadenci, E., Özkılıç, Y. O., Aksoylu, C., Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., & Elizaveta, B. (2023). Experimental and Analytical Investigation of Flexural Behavior of Carbon Nanotube Reinforced Textile Based Composites. Materials, 16(6), 2222. https://doi.org/10.3390/ma16062222