Investigating Different Local Polyurethane Coatings Degradation Effects and Corrosion Behaivors by Talaromyces funiculosus via Wire Beam Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. WBE Fabrication
2.2. T. funiculosus Spore Suspension
2.3. Current Density Mapping
2.4. EIS Measurements
2.5. Corrosion Morphology Characterization
3. Results and Discussion
3.1. Current Density Distribution
3.1.1. Sterile Environmental Analysis
3.1.2. Fungal Environmental Analysis
3.2. Electrochemical Behavior of Selected Electrodes
3.2.1. Changes in the Current Density
3.2.2. EIS Analysis
3.3. Morphology of Coatings
3.4. Corrosion Production Evaluation
4. Conclusions
- (1)
- The local current density distribution on the PU-coated WBE changed greatly after 14 days of immersion in the T. funiculosus-contained medium. After the immersion in sterile liquid mediums, the anode current density of the individual electrode was kept at around 10−7 A/cm−2, but it was only at about 10−3 A/cm2 for the T. funiculosus-contained counterpart.
- (2)
- The corrosion behaviors under the PU coatings after the immersion in a sterile medium were slight, with a |Z|0.01Hz value at ~1010 Ω·cm2 (#74 electrode). However, the local corrosion behavior is obvious after the immersion in the T. funiculosus-contained medium, with |Z|0.01Hz values at 1.05 × 1010 Ω·cm2 (#85 electrode) and 1.06 × 109 Ω·cm2 (#18 electrode).
- (3)
- The corrosion behavior of metal substrates was made up of two parts, which were the self-corrosion process triggered by entries of corrosive media caused by the local damage of the coating and the corrosion process caused by the electric couple effect resulting from the uneven degradation of the coating.
- (4)
- The presented T. funiculosus accelerated the degradation of the PU coatings, causing micro-holes, cracks, and sinking on the coating surface, especially near the mycotic spore.
- (5)
- The existing T. funiculosus reduced the overall shielding performance of the PU coatings and contributed to corrosion behaviors concentrated in localized areas. The corrosion products consisted of γ-FeOOH, γ-Fe2O3, and α-FeOOH.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xavier, J. Electrochemical and dynamic mechanical properties of polyurethane nanocomposite reinforced with functionalized TiO2–ZrO2 nanoparticles in automobile industry. Appl. Nanosci. 2022, 12, 1763–1778. [Google Scholar] [CrossRef]
- Cong, L.; Yang, F.; Guo, G.; Ren, M.; Shi, J.; Tan, L. The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review. Constr. Build. Mater. 2019, 225, 1012–1025. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Zhang, L.; Hou, J.; Lu, Z.; Zhang, P.; Wang, B.; Jin, N. Degradation behavior and mechanism of polyurethane coating for aerospace application under atmospheric conditions in South China Sea. Prog. Org. Coat. 2019, 136, 105310. [Google Scholar] [CrossRef]
- Lomax, G. Breathable polyurethane membranes for textile and related industries. J. Mater. Chem. 2007, 17, 2775–2784. [Google Scholar] [CrossRef]
- Faccini, M.; Bautista, L.; Soldi, L.; Escobar, A.; Altavilla, M.; Calvet, M.; Domènech, A.; Domínguez, E. Environmentally friendly anticorrosive polymeric coatings. Appl. Sci. 2021, 11, 3446. [Google Scholar] [CrossRef]
- Lu, L.; Lu, T.; Ding, M.; Gao, J. Relationship between carrier density and corrosion behavior of acrylic polyurethane coated galvanized steel system in 3.5% NaCl solution. Int. J. Electrochem. Sci. 2019, 14, 9326–9336. [Google Scholar] [CrossRef]
- Duong, N.; An, T.; Oanh, V.; Vu, P.; Hang, T. Degradation of polyurethane coating containing graphene oxide under effect of UV radiation. Vietnam J. Chem. 2020, 58, 333–337. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Xing, S.; Zhang, L.; Lu, Z.; Zhang, P. Failure behavior and damage mechanism of acrylic polyurethane coating in tropical marine atmospheric environment. Int. J. Electrochem. Sci. 2020, 15, 2511–2527. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Q. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere. J. Mater. Sci. Technol. 2021, 64, 195–202. [Google Scholar] [CrossRef]
- Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv. 2020, 39, 107457. [Google Scholar] [CrossRef]
- Geng, S.; Gao, J.; Li, X.; Zhao, Q. Aging behaviors of acrylic polyurethane coatings during UV irradiation. Chin. J. Eng. 2009, 31, 752–757. [Google Scholar] [CrossRef]
- Singh, R.P.; Tomer, N.S.; Bhadraiah, S.V. Photo-oxidation studies on polyurethane coating: Effect of additives on yellowing of polyurethane. Polym. Degrad. Stab. 2001, 73, 443–446. [Google Scholar] [CrossRef]
- Magnin, A.; Entzmann, L.; Pollet, E.; Avérous, L. Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes. Waste Manag. 2021, 132, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Zafar, U.; Houlden, A.; Robson, G. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl. Environ. Microbiol. 2013, 79, 7313–7324. [Google Scholar] [CrossRef]
- Jehanno, C.; Pérez-Madrigal, M.; Demarteau, J.; Sardon, H.; Dove, A. Organocatalysis for depolymerisation. Polym. Chem. 2019, 10, 172–186. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J.; Laycock, B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019, 90, 211–268. [Google Scholar] [CrossRef]
- Khan, S.; Nadir, S.; Shah, Z.; Shah, A.; Karunarathna, S.; Xu, J.; Khan, A.; Munir, S.; Hasan, F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ. Pollut. 2017, 225, 469–480. [Google Scholar] [CrossRef]
- Aung, N.; Tan, Y.-J.; Liu, T. Novel corrosion experiments using the wire beam electrode: (II) Monitoring the effects of ions transportation on electrochemical corrosion processes. Corros. Sci. 2006, 48, 39–52. [Google Scholar] [CrossRef]
- Zhong, Q. Effects of temperature on mild steel gradient-distributed WEB immers in 3.5% NaCl solution. Surf. Rev. Lett. 2021, 28, 2150014. [Google Scholar] [CrossRef]
- Aung, N.; Tan, Y. A new method of studying buried steel corrosion and its inhibition using the wire beam electrode. Corros. Sci. 2004, 46, 3057–3067. [Google Scholar] [CrossRef]
- Jun, T.; Shiti, Y. The effects of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode: Part II. Prog. Org. Coat. 1991, 19, 257–263. [Google Scholar] [CrossRef]
- Wang, T.; Tan, Y.-J. Understanding electrodeposition of polyaniline coatings for corrosion prevention applications using the wire beam electrode method. Corros. Sci. 2006, 48, 2274–2290. [Google Scholar] [CrossRef]
- Xia, W.; Chen, Z.; Zhang, G.; Zhang, W.; Liu, F.; Yao, C.; Lin, Z.; Li, W. Comparison of cathodic protection processes of 40% zinc-rich coatings under immersion and atmospheric conditions: Protection for defective areas. Electrochim. Acta 2021, 385, 138450. [Google Scholar] [CrossRef]
- Tan, Y. Understanding the effects of electrode inhomogeneity and electrochemical heterogeneity on pitting corrosion initiation on bare electrode surfaces. Corros. Sci. 2011, 53, 1845–1864. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, W.; Jia, W. A novel device for the wire beam electrode method and its application in the ennoblement study. Corros. Sci. 2009, 51, 1475–1479. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Z.; Zhang, Z.; Zhang, B.; Ma, G.; Yao, Q.; Gan, Z.; Wu, J.; Li, X. Influence of crevice width on sulfate-reducing bacteria (SRB)-induced corrosion of stainless steel 316L. Corros. Commun. 2021, 4, 33–44. [Google Scholar] [CrossRef]
- Hao, X.; Yang, K.; Zhang, D.; Lu, L. Insight into Degrading Effects of Two Fungi on Polyurethane Coating Failure in a Simulated Atmospheric Environment. Polymers 2023, 15, 328. [Google Scholar] [CrossRef]
- Tan, Y. An overview of techniques for characterizing inhomogeneities in organic surface films and underfilm localized corrosion. Prog. Org. Coat. 2013, 76, 791–803. [Google Scholar] [CrossRef]
- Holness, R.; Williams, G.; Worsley, D.; Mcmurray, H. Polyaniline inhibition of corrosion-driven organic coating cathodic delamination on Iron. J. Electrochem. Soc. 2005, 152, B73. [Google Scholar] [CrossRef]
- Reddy, B.; Doherty, M.; Sykes, J. Breakdown of organic coatings in corrosive environments examined by scanning kelvin probe and scanning acoustic microscopy. Electrochim. Acta 2004, 49, 2965–2972. [Google Scholar] [CrossRef]
- Doherty, M.; Sykes, J. Micro-cells beneath organic lacquers: A study using scanning Kelvin probe and scanning acoustic microscopy. Corros. Sci. 2004, 46, 1265–1289. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Mu, X.; Zhang, P. Studies of electrochemical corrosion of low alloy steel under epoxy coating exposed to natural seawater using the WBE and EIS techniques. Prog. Org. Coat. 2017, 111, 315–321. [Google Scholar] [CrossRef]
- Raj, X.J.; Nishimura, T. Evaluation of the corrosion protection performance of epoxy-coated high manganese steel by SECM and EIS techniques. J. Fail. Anal. Prev. 2016, 16, 417–426. [Google Scholar] [CrossRef]
- Fu, T.; Tang, X.; Cai, Z.; Zuo, Y.; Zhao, X. Correlation research of phase angle variation and coating performance by means of Pearson’s correlation coefficient. Prog. Org. Coat. 2020, 139, 105459. [Google Scholar] [CrossRef]
- Hao, X.; Bai, Y.; Ren, C.; Chang, W.; Qian, H.; Lou, Y.; Zhao, L.; Zhang, D.; Li, X. Self-healing effect of damaged coatings via biomineralization by Shewanella putrefaciens. Corros. Sci. 2022, 196, 110067. [Google Scholar] [CrossRef]
- Burduhos-Nergis, D.-P.; Vasilescu, G.D.; Burduhos-Nergis, D.-D.; Cimpoesu, R.; Bejinariu, C. Phosphate coatings: EIS and SEM applied to evaluate the corrosion behavior of steel in fire extinguishing solution. Appl. Sci. 2021, 11, 7802. [Google Scholar] [CrossRef]
- Yao, H.; Leping, D.; Pengfei, J.; Qian, L.; Hongchang, Z. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres. ACS Appl. Mater. Interfaces 2018, 10, 23369–23379. [Google Scholar] [CrossRef]
- Chen, H.; Cui, H.; He, Z.; Lu, L.; Huang, Y. Influence of chloride deposition rate on rust layer protectiveness and corrosion severity of mild steel in tropical coastal atmosphere. Mater. Chem. Phys. 2021, 259, 123971. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Wang, F. Corrosion of low carbon steel in atmospheric environments of different chloride content. Corros. Sci. 2009, 51, 997–1006. [Google Scholar] [CrossRef]
- Liu, B.; Mu, X.; Yang, Y.; Hao, L.; Ding, X.; Dong, J.; Zhang, Z.; Hou, H.; Ke, W. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere. J. Mater. Sci. Technol. 2019, 40, 1228–1239. [Google Scholar] [CrossRef]
Immersion Time (d) | Rc (Ω·cm2) | CPE-Qc (Ω−1·cm2·Sn) | CPE-n |
---|---|---|---|
3 | 1.78 × 1010 | 2.33 × 10−10 | 0.895 |
7 | 2.88 × 1010 | 2.09 × 10−10 | 0.909 |
11 | 3.17 × 1010 | 2.11 × 10−10 | 0.896 |
14 | 1.99 × 1010 | 1.90 × 10−10 | 0.915 |
Immersion Time (d) | Rc (Ω·cm2) | CPE-Qc (Ω−1·cm2·Sn) | CPE-n | Rct (Ω·cm2) | CPE2-Qdl (Ω−1·cm2·Sn) | CPE2-n |
---|---|---|---|---|---|---|
3 | 6.09 × 108 | 1.05 × 10−10 | 0.951 | 5.67 × 108 | 1.68 × 10−9 | 0.939 |
7 | 6.53 × 108 | 1.07 × 10−10 | 0.960 | 1.02 × 109 | 3.08 × 10−9 | 0.820 |
11 | 7.05 × 108 | 1.16 × 10−10 | 0.955 | 1.73 × 109 | 3.96 × 10−9 | 0.751 |
14 | 5.33 × 108 | 1.26 × 10−10 | 0.953 | 6.71 × 108 | 3.91 × 10−9 | 0.707 |
Immersion Time (d) | Rc (Ω·cm2) | CPE-Qc (Ω−1·cm2·Sn) | CPE-n |
---|---|---|---|
3 | 6.25 × 1010 | 1.21 × 10−10 | 0.945 |
7 | 4.71 × 1010 | 1.18 × 10−10 | 0.949 |
11 | 1.37 × 1010 | 1.31 × 10−10 | 0.950 |
14 | 9.99 × 109 | 1.53 × 10−10 | 0.947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Yang, K.; Yuan, Y.; Zhang, D.; Lu, L. Investigating Different Local Polyurethane Coatings Degradation Effects and Corrosion Behaivors by Talaromyces funiculosus via Wire Beam Electrodes. Materials 2023, 16, 1402. https://doi.org/10.3390/ma16041402
Hao X, Yang K, Yuan Y, Zhang D, Lu L. Investigating Different Local Polyurethane Coatings Degradation Effects and Corrosion Behaivors by Talaromyces funiculosus via Wire Beam Electrodes. Materials. 2023; 16(4):1402. https://doi.org/10.3390/ma16041402
Chicago/Turabian StyleHao, Xiangping, Kexin Yang, Yiding Yuan, Dawei Zhang, and Lin Lu. 2023. "Investigating Different Local Polyurethane Coatings Degradation Effects and Corrosion Behaivors by Talaromyces funiculosus via Wire Beam Electrodes" Materials 16, no. 4: 1402. https://doi.org/10.3390/ma16041402
APA StyleHao, X., Yang, K., Yuan, Y., Zhang, D., & Lu, L. (2023). Investigating Different Local Polyurethane Coatings Degradation Effects and Corrosion Behaivors by Talaromyces funiculosus via Wire Beam Electrodes. Materials, 16(4), 1402. https://doi.org/10.3390/ma16041402