Bandgap Narrowing of BaTiO3-Based Ferroelectric Oxides through Cobalt Doping for Photovoltaic Applications
Abstract
:1. Introduction
2. Experimental Parameters
3. Results and Discussion
3.1. XRD Analysis
3.2. Raman Analysis
3.3. Optical Properties
- (i)
- Substitution of Co2+ at the Ti4+ Site with oxygen vacancy compensation:
- (ii)
- Substitution of M3+ at the Ti4+ Site with oxygen vacancy compensation:
3.4. Band Structure and Density of State Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vidadili, N.; Suleymanov, E.; Bulut, C.; Mahmudlu, C. Transition to renewable energy and sustainable energy development in Azerbaijan. Renew. Sustain. Energy Rev. 2017, 80, 1153–1161. [Google Scholar] [CrossRef]
- Obaideen, K.; Olabi, A.G.; Al Swailmeen, Y.; Shehata, N.; Abdelkareem, M.A.; Alami, A.H.; Rodriguez, C.; Sayed, E.T. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability 2023, 15, 1418. [Google Scholar] [CrossRef]
- Kumar, C.M.S.; Singh, S.; Gupta, M.K.; Nimdeo, Y.M.; Raushan, R.; Deorankar, A.V.; Kumar, T.A.; Rout, P.K.; Chanotiya, C.; Pakhale, V.D.; et al. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain. Energy Technol. Assess. 2023, 55, 102905. [Google Scholar] [CrossRef]
- Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 2012, 16, 5848–5860. [Google Scholar] [CrossRef]
- Yang, R.Q.; Huang, W.; Santos, M.B. Narrow bandgap photovoltaic cells. Sol. Energy Mater. Sol. Cells 2022, 238, 111636. [Google Scholar] [CrossRef]
- Aftab, S.; Haider, Z.; Iqbal, M.W.; Nazir, G.; Shehzad, M.A. Bulk Photovoltaic Effect in 2D Materials for Solar-Power Harvesting. Adv. Opt. Mater. 2022, 10, 2201288. [Google Scholar] [CrossRef]
- Paillard, C.; Bai, X.; Infante, I.C.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with Ferroelectrics: Current Status and Beyond. Adv. Mater. 2016, 28, 5153–5168. [Google Scholar] [CrossRef] [PubMed]
- Jalaja, M.A.; Dutta, S. Ferroelectrics and multiferroics for next generation photovoltaics. Adv. Mater. Lett. 2015, 6, 568–584. [Google Scholar] [CrossRef]
- Guerra, J.D.; Silva, M.C.; Silva, A.C.; Oliveira, M.A.; Mendez-González, Y.; Monte, A.F.; M′Peko, J.C.; Hernandes, A.C. Structural, electrical, and optical properties of (K, Ba)(Nb, Ni)O3–δ electroceramics: Oxygen vacancy and grain size effects. Ceram. Int. 2020, 46, 20201–20206. [Google Scholar] [CrossRef]
- Lopez-Varo, P.; Bertoluzzi, L.; Bisquert, J.; Alexe, M.; Coll, M.; Huang, J.; Jimenez-Tejada, J.A.; Kirchartz, T.; Nechache, R.; Rosei, F.; et al. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys. Rep. 2016, 653, 1–40. [Google Scholar] [CrossRef]
- Saremi, S.; Xu, R.; Dedon, L.R.; Gao, R.; Ghosh, A.; Dasgupta, A.; Martin, L.W. Electronic transport and ferroelectric switching in ion-bombarded, defect-engineered BiFeO3 thin films. Adv. Mater. Interfaces 2018, 5, 1700991. [Google Scholar] [CrossRef]
- Wang, J.; Fang, H.; Wang, X.; Chen, X.; Lu, W.; Hu, W. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. Small 2017, 13, 1700894. [Google Scholar] [CrossRef] [PubMed]
- Spanier, J.E.; Fridkin, V.M.; Rappe, A.M.; Akbashev, A.R.; Polemi, A.; Qi, Y.; Gu, Z.; Young, S.M.; Hawley, C.J.; Imbrenda, D.; et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics 2016, 10, 611–616. [Google Scholar] [CrossRef]
- Alkathy, M.; Zabotto, F.; Milton, F.P.; Eiras, J. Bandgap tuning in samarium-modified bismuth titanate by site engineering using iron and cobalt co-doping for photovoltaic application. J. Alloys Compd. 2022, 908, 164222. [Google Scholar] [CrossRef]
- Alkathy, M.S.; Zabotto, F.L.; Lente, M.H.; Eiras, J.A. Octahedral distortion and oxygen vacancies induced band-gap narrowing and enhanced visible light absorption of Co/Fe co-doped Bi3.25Nd0.75Ti3O12 ferroelectrics for photovoltaic applications. J. Phys. D Appl. Phys. 2020, 53, 465106. [Google Scholar] [CrossRef]
- Wang, M.-Z.; Feng, H.-J.; Qian, C.-X.; He, J.; Feng, J.; Cao, Y.-H.; Yang, K.; Deng, Z.-Y.; Yang, Z.; Yao, X.; et al. PbTiO3 as Electron-Selective Layer for High-Efficiency Perovskite Solar Cells: Enhanced Electron Extraction via Tunable Ferroelectric Polarization. Adv. Funct. Mater. 2019, 29, 201806427. [Google Scholar] [CrossRef]
- Ding, J.; Guo, R.; Hu, J.; Xi, G.; Lu, Y.; Tian, J.; Zhang, L. Switchable ferroelectric photovoltaic in the low bandgap cobalt-substituted BiFeO3 epitaxial thin films. Appl. Surf. Sci. 2022, 606, 154898. [Google Scholar] [CrossRef]
- Ji, Q.; Bi, L.; Zhang, J.; Cao, H.; Zhao, X.S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428. [Google Scholar] [CrossRef]
- Hill, N.A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, F. Electronic Engineering of ABO3 Perovskite Metal Oxides Based on d 0 Electronic-Configuration Metallic Ions toward Photocatalytic Water Splitting under Visible Light. Small Struct. 2022, 3, 2100226. [Google Scholar] [CrossRef]
- Zhou, B.W.; Zhang, J.; Ye, X.B.; Liu, G.X.; Xu, X.; Wang, J.; Liu, Z.H.; Zhou, L.; Liao, Z.Y.; Yao, H.B.; et al. Octahedral Distortion and Displacement-Type Ferroelectricity with Switchable Photovoltaic Effect in a 3d3-Electron Perovskite System. Phys. Rev. Lett. 2023, 130, 146101. [Google Scholar] [CrossRef]
- Alkathy, M.S.; Lente, M.H.; Eiras, J. Bandgap narrowing of Ba0.92Na0.04Bi0.04TiO3 ferroelectric ceramics by transition metals doping for photovoltaic applications. Mater. Chem. Phys. 2021, 257, 123791. [Google Scholar] [CrossRef]
- Sarath, N.V.; Chauhan, A.; Bidika, J.K.; Pal, S.; Nanda, B.R.K.; Murugavel, P. Bandgap engineered BaTiO3-based ferroelectric oxides for photovoltaic applications. J. Appl. Phys. 2023, 28, 134. [Google Scholar] [CrossRef]
- Pal, S.; Sarath, N.V.; Priya, K.S.; Murugavel, P. A review on ferroelectric systems for next generation photovoltaic applications. J. Phys. D Appl. Phys. 2022, 55, 283001. [Google Scholar] [CrossRef]
- Bennett, J.W.; Grinberg, I.; Rappe, A.M. New Highly Polar Semiconductor Ferroelectrics Through d8 Cation-O Vacancy Substitution into PbTiO3: A Theoretical Study. J. Am. Chem. Soc. 2008, 130, 17409–17412. [Google Scholar] [CrossRef] [PubMed]
- Gou, G.Y.; Bennett, J.W.; Takenaka, H.; Rappe, A.M. Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−xNix)O3−x solid solutions: Effects of cation arrangement on the band gap. Phys. Rev. B 2011, 83, 205115. [Google Scholar] [CrossRef]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef]
- Wu, L.; Akbashev, A.R.; Podpirka, A.A.; Spanier, J.E.; Davies, P.K. Infrared-to-ultraviolet light-absorbing BaTiO3-based ferroelectric photovoltaic materials. J. Am. Ceram. Soc. 2019, 102, 4188–4199. [Google Scholar] [CrossRef]
- Xu, D.; Li, W.; Wang, L.; Wang, W.; Cao, W.; Fei, W. Large piezoelectric properties induced by doping ionic pairs in BaTiO3 ceramics. Acta Mater. 2014, 79, 84–92. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–766. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; dos Santos, C.M.; Sasaki, J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A Found. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fan, L.; Liu, Q.; Chen, S.; Huang, W.; Chen, F.; Liao, G.; Zou, C.; Wu, Z. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping. Sci. Rep. 2015, 5, 9328. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Saha, A.; Mondal, S.; Biswas, A.; Mallick, S.; Chatterjee, R.; Roy, S. Review of defect engineering in perovskites for photovoltaic application. Mater. Adv. 2022, 3, 5234–5247. [Google Scholar] [CrossRef]
- Cialla-May, D.; Schmitt, M.; Popp, J. Theoretical Raman spectroscopy principles. Phys. Sci. Rev. 2019, 4, 20170040. [Google Scholar] [CrossRef]
- Pattipaka, S.; Pamu, D. Raman Spectroscopy and Low-Temperature Dielectric Properties of (Bi0.5Na0.5) TiO3 Ceramics. IOP Conf. Ser. Mater. Sci. Eng. 2018, 360, 012024. [Google Scholar] [CrossRef]
- Maxim, F.; Ferreira, P.; Vilarinho, P.M.; Reaney, I. Hydrothermal Synthesis and Crystal Growth Studies of BaTiO3 Using Ti Nanotube Precursors. Cryst. Growth Des. 2008, 8, 3309–3315. [Google Scholar] [CrossRef]
- Shiratori, Y.; Pithan, C.; Dornseiffer, J.; Waser, R. Raman scattering studies on nanocrystalline BaTiO3 Part I—Isolated particles and aggregates. J. Raman Spectrosc. 2007, 38, 1288–1299. [Google Scholar] [CrossRef]
- Shiratori, Y.; Pithan, C.; Dornseiffer, J.; Waser, R. Raman scattering studies on nanocrystalline BaTiO3 Part II—Consolidated polycrystalline ceramics. J. Raman Spectrosc. 2007, 38, 1300–1306. [Google Scholar] [CrossRef]
- Pokorný, J.; Pasha, U.M.; Ben, L.; Thakur, O.P.; Sinclair, D.C.; Reaney, I.M. Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 2011, 109, 114110. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Lu, D.; Li, T.; Zheng, W. Dense Sm and Mn Co-Doped BaTiO3 Ceramics with High Permittivity. Materials 2019, 12, 678. [Google Scholar] [CrossRef]
- Ma, J.; Gu, J.; Su, D.; Wu, X.; Song, C.; Li, W.; Lu, X.; Zhu, J. Structural and ferroelectric properties of yttrium substituted bismuth titanium thin films. Thin Solid Film. 2005, 492, 264–268. [Google Scholar] [CrossRef]
- Alkathy, M.S.; Ali, S.M.; Goud, J.P.; Mastelaro, V.R.; Zabotto, F.L.; Milton, F.P.; Strabello, A.; Raju, K.C.J.; Eiras, J.A. Achieving dense microstructure with desired physical properties rapidly and inexpensively in Bi-modified SrTiO3 ceramics via microwave sintering technique. J. Mater. Sci. Mater. Electron. 2023, 34, 1616. [Google Scholar] [CrossRef]
- Dang, N.V.; Phan, T.-L.; Thanh, T.D.; Lam, V.D.; Hong, L.V. Structural phase separation and optical and magnetic properties of BaTi1−xMnxO3 multiferroics. J. Appl. Phys. 2012, 111, 113913. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Buscaglia, V.; Viviani, M.; Nanni, P. Atomistic Simulation of Dopant Incorporation in Barium Titanate. J. Am. Ceram. Soc. 2001, 84, 376–384. [Google Scholar] [CrossRef]
- Soni, M.; Saleem, M.; Bajpai, N.; Chouhan, S.; Varshney, M.D.; Mishra, A. Structural and optical properties on Na doped BaTiO3. AIP Conf. Proc. 2019, 2100, 020185. [Google Scholar]
- Melendez, J.J.; Zulueta, Y.A.; Leyet, Y. First-principles study of neutral defects in Fe-doped cubic barium titanate. Ceram. Int. 2015, 41, 1647–1656. [Google Scholar] [CrossRef]
- Wu, Q.; Krol, R.V.D. Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: Role of oxygen vacancies and iron dopant. J. Am. Chem. Soc. 2012, 134, 9369–9375. [Google Scholar] [CrossRef]
- Michel-Calendini, F.M.; Mesnard, G. Band structure and optical properties of tetragonal BaTiO3. J. Phys. C Solid State Phys. 1973, 6, 1709. [Google Scholar] [CrossRef]
- Samantaray, C.; Sim, H.; Hwang, H. The electronic structures and optical properties of BaTiO3 and SrTiO3 using first-principles calculations. Microelectron. J. 2005, 36, 725–728. [Google Scholar] [CrossRef]
- Rizwan, M.; Zeba, I.; Shakil, M.; Gillani, S.S.A.; Usman, Z. Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation. Optik 2020, 211, 164611. [Google Scholar] [CrossRef]
Sample/Parameter | x = 0 | x = 0.02 | x = 0.04 | x = 0.08 |
---|---|---|---|---|
Crystal System | Tetragonal | Tetragonal | Tetragonal | Tetragonal |
a = b (Å) | 3.9943 ± 0.001 | 3.9928 ± 0.001 | 3.9913 ± 0.001 | 3.9899 ± 0.001 |
c (Å) | 4.0267 ± 0.001 | 4.0154 ± 0.001 | 4.0137 ± 0.001 | 4.0125 ± 0.001 |
V (Å)3 | 64.2104 ± 0.001 | 64.0147 ± 0.001 | 63.9386 ± 0.001 | 63.8762 ± 0.001 |
c/a | 1.0084 ± 0.001 | 1.0057 ± 0.001 | 1.00562 ± 0.001 | 1.00561 ± 0.001 |
Space group | P 4 mm | P 4 mm | P 4 mm | P 4 mm |
Density g/cm3 | 6.058 | 6.047 | 6.024 | 6.011 |
Crystallite size (nm) | 37 | 33 | 30 | 28 |
Lattice strain | 0.0025 | 0.0027 | 0.0031 | 0.0033 |
Rp (%) | 4.71 | 6.42 | 5.83 | 6.75 |
Rwp (%) | 5.55 | 5.72 | 6.98 | 8.31 |
Rex (%) | 5.33 | 5.17 | 5.47 | 5.83 |
χ2 | 1.08 | 1.22 | 1.62 | 2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatasheh, M.K.; Daoud, M.S.; Kassim, H. Bandgap Narrowing of BaTiO3-Based Ferroelectric Oxides through Cobalt Doping for Photovoltaic Applications. Materials 2023, 16, 7528. https://doi.org/10.3390/ma16247528
Gatasheh MK, Daoud MS, Kassim H. Bandgap Narrowing of BaTiO3-Based Ferroelectric Oxides through Cobalt Doping for Photovoltaic Applications. Materials. 2023; 16(24):7528. https://doi.org/10.3390/ma16247528
Chicago/Turabian StyleGatasheh, Mansour K., Mohamed Saad Daoud, and Hamoud Kassim. 2023. "Bandgap Narrowing of BaTiO3-Based Ferroelectric Oxides through Cobalt Doping for Photovoltaic Applications" Materials 16, no. 24: 7528. https://doi.org/10.3390/ma16247528
APA StyleGatasheh, M. K., Daoud, M. S., & Kassim, H. (2023). Bandgap Narrowing of BaTiO3-Based Ferroelectric Oxides through Cobalt Doping for Photovoltaic Applications. Materials, 16(24), 7528. https://doi.org/10.3390/ma16247528