Tribological Properties Laser-Cladded Spherical WB-Reinforced Co-Based Coatings under Low-Temperature Friction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spheroidization of WB
2.3. Sample Preparation and Characterization
2.4. Low Temperature Friction and Hardness Tests
3. Results and Discussion
3.1. Microstructure and Constituent Phase of the Laser Cladded Coatings
3.2. Hardness of the Laser Cladded Coatings
3.3. Low-Temperature Wear Resistance
3.4. Tribological Mechanism under Low Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.W.; Roh, M.I.; Kim, K.S. Ship route planning in Arctic ocean based on Polaris. Ocean Eng. 2021, 234, 109297. [Google Scholar] [CrossRef]
- Aksenov, Y.; Popova, E.E.; Yool, A.; Nurser, A.J.G.; Williams, T.D.; Bertino, L.; Bergh, J. On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Mar. Policy 2017, 75, 300–317. [Google Scholar] [CrossRef]
- Wang, K.; Wu, L.; Li, Y.Z.; Qin, C. Experimental study on low temperature fatigue performance of polar icebreaking ship steel. Ocean Eng. 2020, 216, 107789. [Google Scholar] [CrossRef]
- Topaj, A.G.; Tarovik, O.V.; Bakharev, A.A.; Kondratenko, A.A. Optimal ice routing of a ship with icebreaker assistance. Appl. Ocean Res. 2019, 86, 177–187. [Google Scholar] [CrossRef]
- Fernández, M.R.; García, A.; Cuetos, J.M.; González, R.; Noriega, A.; Cadenas, M. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC. Wear 2015, 324, 80–89. [Google Scholar] [CrossRef]
- Bartkowski, D.; Młynarczak, A.; Piasecki, A.; Dudziak, B.; Gościański, M.; Bartkowska, A. Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding. Opt. Laser Technol. 2015, 68, 191–201. [Google Scholar] [CrossRef]
- Pereira, J.; Zambrano, J.; Licausi, M.; Amigó, V. Tribology and high temperature friction wear behavior of MCrAlY laser cladding coatings on stainless steel. Wear 2015, 330, 280–287. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Liu, J.; Chen, C.; Dai, J.; Zhao, Z. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V. Opt. Laser Technol. 2017, 92, 156–162. [Google Scholar] [CrossRef]
- Chen, G.Q.; Fu, X.S.; Wei, Y.H.; Li, S.; Zhou, W.L. Microstructure and wear properties of nickel-based surfacing deposited by plasma transferred arc welding. Surf. Coat. Technol. 2013, 228, 276–282. [Google Scholar]
- Wang, J.D.; Li, L.Q.; Wang, T. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition. Opt. Laser Technol. 2016, 82, 170–182. [Google Scholar] [CrossRef]
- Zavareh, M.A.; Sarhan, A.A.D.M.; Razak, B.A.; Basirun, W.J. The tribological and electrochemical behavior of HVOF-sprayed Cr3C2-NiCr ceramic coating on carbon steel. Ceram. Int. 2015, 41, 5387–5396. [Google Scholar] [CrossRef]
- D’Oliveira, A.; Vilar, R.; Feder, C.G. High temperature behaviour of plasma transferred arc and laser Co-based alloy coatings. Appl. Surf. Sci. 2002, 201, 154–160. [Google Scholar] [CrossRef]
- Shabana; Sarcar, M.M.M.; Suman, K.N.S.; Kamaluddin, S. Tribological and corrosion behavior of HVOF sprayed WC-Co, NiCrBSi and Cr3C2-NiCr coatings and analysis using design of experiments. Mater. Today Proc. 2015, 2, 2654–2665. [Google Scholar] [CrossRef]
- Priyanka, R.; Anugya, R.; Pratap, V.U. Insights into structural, electronic, optical and thermoelectric properties of WB and WAlB: A first principle study. Philos. Mag. 2018, 98, 2657–2679. [Google Scholar]
- Yang, J.; Yang, Z.; Lei, X.; Zhao, Y. Behavior and mechanism for Boron atom diffusing across tungsten grain boundary in the preparation of WB coating: A first-principles calculation. Appl. Surf. Sci. 2020, 543, 148778. [Google Scholar] [CrossRef]
- Brezinová, J.; Guzanová, A.; Draganovská, D.; Maruschak, P.O.; Landová, M. Study of selected properties of thermally sprayed coatings containing WC and WB hard particles. Acta Mech. Autom. 2016, 10, 296–299. [Google Scholar] [CrossRef]
- Wang, H.B.; Yan, X.F.; Liu, X.M.; Lu, H.; Hou, C.; Song, X.Y.; Nie, Z.R. Microstructure, mechanical and tribological properties of WC-WCoB coating. J. Eur. Ceram. Soc. 2018, 38, 4874–4881. [Google Scholar] [CrossRef]
- Yan, X.F.; Wang, H.B.; Liu, X.M.; Hou, C.; Qiu, Q.F.; Song, X.Y. High-temperature oxidation and wear resistance of WC-Co based coatings with WB addition. J. Eur. Ceram. Soc. 2019, 39, 3023–3034. [Google Scholar] [CrossRef]
- Munteanu, C.; Paleu, V.; Istrate, B.; Dasclu, A.; Paleu, C.C.; Bhaumik, S.; Ancas, A.D. Tribological behavior and microstructural analysis of atmospheric plasma spray deposited thin coatings on cardan cross spindles. Materials 2021, 14, 7322. [Google Scholar] [CrossRef]
- Sun, S.B.; Wang, H.B.; Liu, X.M.; Liu, C.; Lu, H.; Nie, Z.R.; Song, X.Y. Outstanding anti-oxidation performance of boride coating under high-temperature friction. Corros. Sci. 2021, 179, 109133. [Google Scholar] [CrossRef]
- Hao, Z.H.; Chen, Y.H.; Fu, Z.H.; Guo, S.; Zhu, X.Y.; Zhou, F.; Shu, Y.C.; He, J.L. A comparative study on spheroidization of sodium reduced and hydrogenation-dehydrogenation tantalum powder by RF plasma. Int. J. Refract. Met. Hard Mater. 2021, 100, 105624. [Google Scholar] [CrossRef]
- Fan, L.; Li, X.Y.; Du, H.L.; Chen, H.Y. Corrosion behavior of FeNiCrMoSiC laser cladding coatings with different addition of Ni content in acidic environment. Sci. Adv. Mater. 2021, 13, 2364–2375. [Google Scholar] [CrossRef]
- Cao, Q.Z.; Fan, L.; Chen, H.Y.; Xu, Y.R.; Dong, L.H. Corrosion behavior of WC-Co coating by plasma transferred arc on EH40 steel in low-temperature. High Temp. Mater. Process. 2022, 41, 191–205. [Google Scholar]
- Weng, F.; Yu, H.J.; Chen, C.Z.; Dai, J.J. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V. Mater. Des. 2015, 80, 174–181. [Google Scholar] [CrossRef]
- Chong, X.Y.; Jiang, Y.H.; Zhou, R.; Feng, J. Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure. Ceram. Int. 2016, 42, 2117–2132. [Google Scholar] [CrossRef]
- Li, C.J.; Yang, G.J. Relationships between feedstock structure, particle parameter, coating deposition, microstructure and properties for thermally sprayed conventional and nanostructured WC-Co. Int. J. Refract. Met. Hard Mater. 2013, 39, 2–17. [Google Scholar] [CrossRef]
- Wang, X.W.; Fan, L.; Xu, Y.R.; Chen, H.Y.; Cao, Q.Z.; Dong, L.H.; Qin, Y.J. Low-temperature corrosion behavior of laser cladding metal-based alloy coatings on EH40 high-strength steel for icebreaker. High Temp. Mater. Process. 2022, 41, 434–448. [Google Scholar] [CrossRef]
- Fan, L.; Dong, Y.H.; Chen, H.Y.; Dong, L.H.; Yin, Y.S. Wear properties of plasma transferred arc Fe-based coatings reinforced by spherical WC particles. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2019, 34, 433–439. [Google Scholar] [CrossRef]
- Liu, Y.N.; Ding, Y.; Yang, L.J.; Sun, R.L.; Zhang, T.G.; Yang, X.J. Research and progress of laser cladding on engineering alloys: A review. J. Manuf. Process. 2021, 66, 341–363. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- St-Georges, L. Development and characterization of composite Ni-Cr+WC laser cladding. Wear 2007, 263, 562–566. [Google Scholar] [CrossRef]
- Hu, D.W.; Liu, Y.; Chen, H.; Wang, M.C. Microstructure and wear resistance of Ni-based tungsten carbide coating by laser cladding on tunnel boring machine cutter ring. Surf. Coat. Technol. 2020, 404, 126432. [Google Scholar] [CrossRef]
- Xu, Y.R.; Chen, H.Y.; Fan, L.; Hou, Y.; Cheng, Q.; Dong, L.H. Microstructure and wear resistance of spherical tungsten carbide reinforced cobalt-based composite coating. Mater. Express 2021, 11, 233–239. [Google Scholar]
- Reichelt, M.; Cappella, B. Large scale multi-parameter analysis of wear of self-mated 100Cr6 steel—A study of the validity of Archard’s law. Tribol. Int. 2021, 159, 106945. [Google Scholar] [CrossRef]
- Abdollahi, A.; Alizadeh, A.; Baharvandi, H.R. Dry sliding tribological behavior and mechanical properties of Al2024-5wt.% B4C nanocomposite produced by mechanical milling and hot extrusion. Mater. Des. 2014, 55, 471–481. [Google Scholar] [CrossRef]
- Cao, Q.Z.; Fan, L.; Chen, H.Y.; Hou, Y.; Dong, L.H.; Ni, Z.W. Wear behavior of laser cladded WC-reinforced Ni-based coatings under low temperature. Tribol. Int. 2022, 176, 107939. [Google Scholar] [CrossRef]
- López, D.A.; Zapata, J.; Sepúlveda, M.; Hoyos, E.; Toro, A. The role of particle size and solids concentration on the transition from moderate to severe slurry wear regimes of ASTM A743 grade CA6NM stainless steel. Tribol. Int. 2018, 127, 96–107. [Google Scholar] [CrossRef]
Parameters | Set Value |
---|---|
Feed rate (g/min) | 20 |
Carrier gas (L/min) | 5 |
Dispersing gas (L/min) | 10 |
Central gas (L/min) | 30 |
Sheath gas(L/min) | 30 |
Pressure (kPa) | 15 |
Power (kW) | 55 |
Samples | WB Composition (wt.%) | Co-Based Powder (wt.%) |
---|---|---|
Co + 15%WB | 15 | 85 |
Co + 45%WB | 45 | 55 |
Co | 0 | 100 |
Laser Powder (kW) | Laser Wavelength (nm) | Scanning Speed (mm/s) | Powder Feed Rate (g/min) | Spot Diameter (mm) | Overlapping Ratio |
---|---|---|---|---|---|
5.5 | 1080 | 16 | 33 | 5 | 33% |
Specimens | Wear Width (μm) | Wear Depth (μm) | Wear Volume (mm3) | Wear Rate (mm3/N·m−1) | Average COF |
---|---|---|---|---|---|
Co + 15%WB | 715.223 | 11.195 | 0.984 | 2.733 × 10−3 | 0.4003 |
Co + 45%WB | 285.921 | 3.124 | 0.128 | 3.567 × 10−4 | 0.3807 |
Co | 843.960 | 22.435 | 3.278 | 9.105 × 10−3 | 0.5743 |
EH40 | 911.003 | 24.208 | 4.600 | 12.78 × 10−3 | 0.5918 |
Specimens | Wear Width (μm) | Wear Depth (μm) | Wear Volume (mm3) | Wear Rate (mm3/N·m−1) | Average COF |
---|---|---|---|---|---|
Co + 15%WB | 354.936 | 3.440 | 0.067 | 0.186 × 10−4 | 0.2729 |
Co + 45%WB | 386.486 | 2.902 | 0.051 | 0.142 × 10−4 | 0.2384 |
Co | 337.189 | 3.352 | 0.057 | 0.158 × 10−4 | 0.2709 |
EH40 | 928.749 | 17.615 | 0.778 | 1.080 × 10−4 | 0.3334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Chen, H.; Zhu, G.; Cao, Q.; Dong, L. Tribological Properties Laser-Cladded Spherical WB-Reinforced Co-Based Coatings under Low-Temperature Friction. Materials 2023, 16, 6444. https://doi.org/10.3390/ma16196444
Fan L, Chen H, Zhu G, Cao Q, Dong L. Tribological Properties Laser-Cladded Spherical WB-Reinforced Co-Based Coatings under Low-Temperature Friction. Materials. 2023; 16(19):6444. https://doi.org/10.3390/ma16196444
Chicago/Turabian StyleFan, Li, Haiyan Chen, Guangkuo Zhu, Qizheng Cao, and Lihua Dong. 2023. "Tribological Properties Laser-Cladded Spherical WB-Reinforced Co-Based Coatings under Low-Temperature Friction" Materials 16, no. 19: 6444. https://doi.org/10.3390/ma16196444
APA StyleFan, L., Chen, H., Zhu, G., Cao, Q., & Dong, L. (2023). Tribological Properties Laser-Cladded Spherical WB-Reinforced Co-Based Coatings under Low-Temperature Friction. Materials, 16(19), 6444. https://doi.org/10.3390/ma16196444