Piezoresistive Effect of Conductive and Non-Conductive Fillers in Bi-Layer Hybrid CNT Composites under Extreme Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Single and Bi-Layer Composites
2.3. Characterization and Test Conditions
3. Results and Discussion
3.1. Morphology Analysis
3.2. Mechanical and Electrical Properties
3.3. Piezoresistive Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, J.; Wang, D.; Peng, Y.; Zhang, C.; Lai, F.; He, G.; Ma, P.; Dong, W.; Huang, Y.; Parkin, I.P.; et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 2022, 97, 107160. [Google Scholar] [CrossRef]
- Lin, M.; Zheng, Z.; Yang, L.; Luo, M.; Fu, L.; Lin, B.; Xu, C. A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv. Mater. 2022, 34, 2107309. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, C.; Song, L.; Wang, Y.; Wei, Q.; Alamusi; Deng, Q.; Hu, N. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Compos. Sci. Technol. 2022, 218, 109148. [Google Scholar] [CrossRef]
- Liu, M.Y.; Hang, C.Z.; Wu, X.Y.; Zhu, L.Y.; Wen, X.H.; Wang, Y.; Zhao, X.F.; Lu, H.L. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices. Nanotechnology 2022, 33, 255501. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Tang, S.-Y.; Lu, H.; Zhang, S.; Dickey, M.D.; Li, W. Hybrid-filler stretchable conductive composites: From fabrication to application. Small Sci. 2021, 1, 2000080. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, D.; Yoo, H. Recent advances in metal-oxide thin-film transistors: Flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic applications. Coatings 2022, 12, 204. [Google Scholar] [CrossRef]
- Lee, T.; Choi, Y.W.; Lee, G.; Kim, S.M.; Kang, D.; Choi, M. Crack-based strain sensor with diverse metal films by inserting an inter-layer. RSC Adv. 2017, 7, 34810–34815. [Google Scholar] [CrossRef]
- Trung, T.Q.; Lee, N.E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 2017, 29, 1603167. [Google Scholar] [CrossRef]
- Kausar, A.; Rafique, I.; Muhammad, B. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym.-Plast. Technol. Eng. 2016, 55, 1167–1191. [Google Scholar] [CrossRef]
- Nag, A.; Mukhopadhyay, S.C. Fabrication and implementation of carbon nanotubes for piezoresistive-sensing applications: A review. J. Sci. Adv. Mater. Devices 2022, 7, 100416. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Jiang, Y.; Toe, C.Y.; Mofarah, S.S.; Cazorla, C.; Chang, S.L.Y.; Yin, Y.; Zhang, Q.; Lim, S.; Yao, Y.; Tian, R.; et al. Efficient Cocatalyst-Free Piezo-Photocatalytic Hydrogen Evolution of Defective BaTiO3–x Nanoparticles from Seawater. ACS Sustain. Chem. Eng. 2023, 11, 3370–3389. [Google Scholar] [CrossRef]
- Ud Din, I.; Aslam, N.; Medhin, Y.; Sikandar Bathusha, M.S.; Irfan, M.S.; Umer, R.; Khan, K.A. Electromechanical behavior of self-sensing composite sandwich structures for next generation more electric aerostructures. Compos. Struct. 2022, 300, 116169. [Google Scholar] [CrossRef]
- Ud Din, I.; Medhin, Y.; Aslam, N.; Bathusha, M.S.S.; Umer, R.; Khan, K.A. Rate dependent piezoresistive characterization of smart aerospace sandwich structures embedded with reduced graphene oxide (rGO) coated fabric sensors. Compos. Commun. 2022, 36, 101382. [Google Scholar] [CrossRef]
- Xue, K.; Jiang, Y.; Mofarah, S.S.; Doustkhah, E.; Zhou, S.; Zheng, X.; Huang, S.; Wang, D.; Sorrell, C.C.; Koshy, P. Composition-driven morphological evolution of BaTiO3 nanowires for efficient piezocatalytic hydrogen production. Chemosphere 2023, 338, 139337. [Google Scholar] [CrossRef]
- Hur, O.N.; Ha, J.H.; Park, S.H. Strain-sensing properties of multi-walled carbon nanotube/polydimethylsiloxane composites with different aspect ratio and filler contents. Materials 2020, 13, 2431. [Google Scholar] [CrossRef]
- Turco, A.; Monteduro, A.G.; Montagna, F.; Primiceri, E.; Frigione, M.; Maruccio, G. Does size matter? the case of piezoresistive properties of carbon nanotubes/elastomer nanocomposite synthesized through mechanochemistry. Nanomaterials 2022, 12, 2741. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, Y.; Jang, M.G.; Han, C.; Kim, W.N. Electrical conductivity and EMI shielding effectiveness of polyurethane foam-conductive filler composites. J. Appl. Polym. Sc. 2017, 134, 44373. [Google Scholar] [CrossRef]
- Xue, S.-S.; Tang, Z.-H.; Zhu, W.-B.; Li, Y.-Q.; Huang, P.; Fu, S.-Y. Stretchable and ultrasensitive strain sensor from carbon nanotube-based composite with significantly enhanced electrical and sensing properties by tailoring segregated conductive networks. Compos. Commun. 2022, 29, 100987. [Google Scholar] [CrossRef]
- Li, W.; Yuan, J.; Dichiara, A.; Lin, Y.; Bai, J. The use of vertically aligned carbon nanotubes grown on SiC for in situ sensing of elastic and plastic deformation in electrically percolative epoxy composites. Carbon 2012, 50, 4298–4301. [Google Scholar] [CrossRef]
- Qian, D.; Dickey, E.C. In-situ transmission electron microscopy studies of polymer-carbon nanotube composite deformation. J. Microsc. 2001, 204, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Gojny, F.; Wichmann, M.; Fiedler, B.; Schulte, K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study. Compos. Sci. Technol. 2005, 65, 2300–2313. [Google Scholar] [CrossRef]
- Wang, E.; Dong, Y.; Islam, M.D.Z.; Yu, L.; Liu, F.; Chen, S.; Qi, X.; Zhu, Y.; Fu, Y.; Xu, Z.; et al. Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos. Sci. Technol. 2019, 169, 209–216. [Google Scholar] [CrossRef]
- Burgoa, A.; Lekube, B.; Zulueta, K. SMC/TPE bi-layer configurations for structural vibration damping applications. J. Appl. Polym. Sci. 2021, 139, 51748. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Nam, H.J.; Choa, S.-H. Highly stretchable strain sensor with a high and broad sensitivity composed of carbon nanotube and EcoFlex composite. Korean J. Met. Mater. 2023, 61, 500–508. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, G.; Jeong, J. Stretchable silver electrodes adopting double stress release design directly deposited on an eco-flex substrate. Flex. Print. Electron. 2023, 8, 025006. [Google Scholar] [CrossRef]
- ASTM D638; The Definitive Guide to Plastic Tensile Testing. ASTM International: West Conshohocken, PA, USA, 2022.
- Ha, J.H.; Lee, S.E.; Park, S.H. Effect of dispersion by three-roll milling on electrical properties and filler length of carbon nanotube composites. Materials 2019, 12, 3823. [Google Scholar] [CrossRef]
- Sattayanurak, S.; Sahakaro, K.; Kaewsakul, W.; Dierkes, W.K.; Reuvekamp, L.A.E.M.; Blume, A.; Noordermeer, J.W.M. Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polym. Test. 2020, 81, 106173. [Google Scholar] [CrossRef]
- Dai, X.; Cao, Y.; Shi, X.; Wang, X. The PLA/ZIF-8 nanocomposite membranes: The diameter and surface roughness adjustment by ZIF-8 nanoparticles, high wettability, improved mechanical property, and efficient oil/water separation. Adv. Mater. Interfaces 2016, 3, 1600725. [Google Scholar] [CrossRef]
- Wu, Z.; Dong, J.; Teng, C.; Li, X.; Zhao, X.; Qin, X.; Ji, C.; Zhang, Q. Polyimide-based composites reinforced by carbon nanotube-grafted carbon fiber for improved thermal conductivity and mechanical property. Compos. Commun. 2023, 39, 101543. [Google Scholar] [CrossRef]
- Ahmadian Hoseini, A.H.; Erfanian, E.; Kamkar, M.; Sundararaj, U.; Liu, J.; Arjmand, M. Waste to value-added product: Developing electrically conductive nanocomposites using a non-recyclable plastic waste containing vulcanized rubber. Polymers 2021, 13, 2427. [Google Scholar] [CrossRef]
- Park, S.H.; Hwang, J.; Park, G.S.; Ha, J.H.; Zhang, M.; Kim, D.; Yun, D.J.; Lee, S.; Lee, S.H. Modeling the electrical resistivity of polymer composites with segregated structures. Nat. Commun. 2019, 10, 2537. [Google Scholar] [CrossRef]
- Vovchenko, L.L.; Len, T.A.; Matzui, L.Y.; Yakovenko, O.S.; Oliynyk, V.V.; Zagorodnii, V.V.; Ischenko, O.V. Electrical and shielding properties of epoxy composites with combined fillers (SiO2-Fe2O3)/CNT and (SiO2-Fe3O4)/CNT. Appl. Compos. Mater. 2023, 30, 635–651. [Google Scholar] [CrossRef]
- Yu, Y.; Fang, Z.; Luo, Y.; Wu, H.; Li, Q.; Fan, S.; Wang, J. Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale 2020, 12, 24259–24265. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, S.; Sun, L.; Wu, Y.; Jiang, K.; Li, Q.; Wang, J.; Fan, S. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 2015, 7, 10178–10185. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Chortos, A.; Lian, F.; Pop, E.; Linder, C.; Bao, Z.; Cai, W. Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors. Proc. Natl. Acad. Sci. USA 2018, 115, 1986–1991. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Feng, X.; Zhang, S.-M. The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect. Compos. Sci. Technol. 2009, 69, 2198–2204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.-J.; Nam, K.-W.; Kang, B.-H.; Park, S.-H. Piezoresistive Effect of Conductive and Non-Conductive Fillers in Bi-Layer Hybrid CNT Composites under Extreme Strain. Materials 2023, 16, 6335. https://doi.org/10.3390/ma16186335
Kim W-J, Nam K-W, Kang B-H, Park S-H. Piezoresistive Effect of Conductive and Non-Conductive Fillers in Bi-Layer Hybrid CNT Composites under Extreme Strain. Materials. 2023; 16(18):6335. https://doi.org/10.3390/ma16186335
Chicago/Turabian StyleKim, Won-Jin, Kun-Woo Nam, Byung-Ho Kang, and Sung-Hoon Park. 2023. "Piezoresistive Effect of Conductive and Non-Conductive Fillers in Bi-Layer Hybrid CNT Composites under Extreme Strain" Materials 16, no. 18: 6335. https://doi.org/10.3390/ma16186335