Comparison of the Efficiency of Hetero- and Homogeneous Catalysts in Cellulose Liquefaction
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Bio-Polyols
2.3. Characterization
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Chemical Structure
3.3. Thermal Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kong, X.; Liu, G.; Curtis, J.M. Novel polyurethane produced from canola oil-based poly(ether ester) polyols: Synthesis, characterization and properties. Eur. Polym. J. 2012, 48, 2097–2106. [Google Scholar] [CrossRef]
- Marcovich, N.E.; Kurańska, M.; Prociak, A.; Malewska, E.; Kulpa, K. Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind. Crops Prod. 2017, 102, 88–96. [Google Scholar] [CrossRef]
- Ionescu, M.; Radojčić, D.; Wan, X.; Shrestha, M.L.; Petrović, Z.S.; Upshaw, T.A. Highly functional polyols from castor oil for rigid polyurethanes. Eur. Polym. J. 2016, 84, 736–749. [Google Scholar] [CrossRef]
- Tran, M.H.; Lee, E. Development and optimization of solvothermal liquefaction of marine macroalgae Saccharina japonica biomass for biopolyol and biopolyurethane production. J. Ind. Eng. Chem. 2020, 81, 167–177. [Google Scholar] [CrossRef]
- Tran, M.H.; Lee, B.; Lee, H.; Brigljević, B.; Lee, E.; Lim, H. Sustainable biopolyol production via solvothermal liquefaction silvergrass saccharification residue: Experimental, economic, and environmental approach. Sci. Total Environ. 2022, 847, 157668. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.J.; Ly, H.V.; Kim, J.; Kim, S.-S.; Lee, E. Preparation of biopolyol by liquefaction of palm kernel cake using PEG#400 blended glycerol. J. Ind. Eng. Chem. 2015, 29, 304–313. [Google Scholar] [CrossRef]
- Patel, M.; Zhang, X.; Kumar, A. Techno-economic and Life Cycle Assessment on Lignocellulosic Biomass Thermochemical Conversion Technologies: A Review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [Google Scholar] [CrossRef]
- Song, C.; Zhang, C.; Zhang, S.; Lin, H.; Kim, Y.; Ramakrishnan, M.; Du, Y.; Zhang, Y.; Zheng, H.; Barceló, D. Thermochemical Liquefaction of Agricultural and Forestry Wastes into Biofuels and Chemicals from Circular Economy Perspectives. Sci. Total Environ. 2020, 749, 141972. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Väisänen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of Agricultural and Forest Industry Waste and Residues in Natural Fiber-Polymer Composites: A Review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Kim, K.H.; Jo, Y.J.; Lee, C.G.; Lee, E. Solvothermal Liquefaction of Microalgal Tetraselmis sp. Biomass to Prepare Biopolyols by Using PEG#400-Blended Glycerol. Algal Res. 2015, 12, 539–544. [Google Scholar] [CrossRef]
- Akhtar, J.; Saidina Amin, N.A. A Review on Process Conditions for Optimum Bio-Oil Yield in Hydrothermal Liquefaction of Biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yuan, X.-Z. Recent Progress in the Direct Liquefaction of Typical Biomass. Prog. Energy Combust. Sci. 2015, 49, 59–80. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal Liquefaction of Various Biomass and Waste Feedstocks for Biocrude Production: A State of the Art Review. Renew. Sustain. Energy Rev. 2017, 68 Pt 1, 113–125. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Hu, S. Lignocellulosic Biomass-Based Polyols for Polyurethane Applications. In Bio-Based Polyols and Polyurethanes; Springer: Cham, Switzerland, 2015; pp. 45–64. [Google Scholar] [CrossRef]
- Janiszewska, D.; Frąckowiak, I.; Mytko, K. Exploitation of Liquefied Wood Waste for Binding Recycled Wood Particleboards. Holzforschung 2016, 70, 1135–1138. [Google Scholar] [CrossRef]
- Long, J.; Lou, W.; Wang, L.; Yin, B.; Li, X. [C4H8SO3Hmim]HSO4 as an Efficient Catalyst for Direct Liquefaction of Bagasse Lignin: Decomposition Properties of the Inner Structural Units. Chem. Eng. Sci. 2015, 122, 24–33. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, L.; Alsowij, M.; Corbin, F.; Boakye, E.; Gu, Z.; Raynie, D. Catalytic Hydrothermal Liquefaction (HTL) of Biomass for Bio-Crude Production Using Ni/HZSM-5 Catalysts. AIMS Environ. Sci. 2017, 4, 417–430. [Google Scholar] [CrossRef]
- Zeng, C.; Zheng, H.; Lv, J.; Chen, X.; Huang, B. Liquefaction of Fir Saw Dust in Supercritical Ethanol with Dissolved Phosphotungstic Acid. BioResources 2015, 10, 7738–7751. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586. [Google Scholar] [CrossRef]
- Kosmela, P.; Suchorzewski, J.; Formela, K.; Kazimierski, P.; Haponiuk, J.; Piszczyk, Ł. Microstructure–Property Relationship of Polyurethane Foams Modified with Baltic Sea Biomass: Microcomputed Tomography vs. Scanning Electron Microscopy. Materials 2020, 13, 5734. [Google Scholar] [CrossRef] [PubMed]
- Kosmela, P.; Hejna, A.; Formela, K.; Haponiuk, J.; Piszczyk, Ł. The Study on Application of Biopolyols Obtained by Cellulose Biomass Liquefaction Performed with Crude Glycerol for the Synthesis of Rigid Polyurethane Foams. J. Polym. Environ. 2018, 26, 2546–2554. [Google Scholar] [CrossRef]
- Olszewski, A.; Kosmela, P.; Mielewczyk-Gryń, A.; Piszczyk, Ł. Bio-Based Polyurethane Composites and Hybrid Composites Containing a New Type of Bio-Polyol and Addition of Natural and Synthetic Fibers. Materials 2020, 13, 2028. [Google Scholar] [CrossRef] [PubMed]
- Gosz, K.; Kowalkowska-Zedler, D.; Haponiuk, J.; Piszczyk, Ł. Liquefaction of Alder Wood as the Source of Renewable and Sustainable Polyols for Preparation of Polyurethane Resins. Wood Sci. Technol. 2020, 54, 103–121. [Google Scholar] [CrossRef]
- Kosmela, P.; Hejna, A.; Formela, K.; Haponiuk, J.; Piszczyk, Ł. Biopolyols Obtained via Crude Glycerol-Based Liquefaction of Cellulose: Their Structural, Rheological and Thermal Characterization. Cellulose 2016, 23, 2929–2942. [Google Scholar] [CrossRef]
- Olszewski, A.; Kosmela, P.; Piszczyk, Ł. Bio-polyols Synthesized by Liquefaction of Cellulose: Influence of Liquefaction Solvent Molecular Weight. J. Appl. Polym. Sci. 2023, 140, e54003. [Google Scholar] [CrossRef]
- PN-93/C-89052/03; Polyethers for Polyurethanes. Test Methods. Determination of Hydroxyl Number. Polish Committee for Standardization: Warsaw, Poland, 1985.
- Gosz, K.; Kosmela, P.; Hejna, A.; Gajowiec, G.; Piszczyk, Ł. Biopolyols Obtained via Microwave-Assisted Liquefaction of Lignin: Structure, Rheological, Physical and Thermal Properties. Wood Sci. Technol. 2018, 52, 599–617. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.-Z. A novel method of utilizing the biomass resource: Rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (PUF). J. Chin. Inst. Chem. Eng. 2007, 38, 95–102. [Google Scholar] [CrossRef]
- Yamada, T.; Ono, H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour. Technol. 1999, 70, 61–67. [Google Scholar] [CrossRef]
- Lee, S.-H.; Teramoto, Y.; Shiraishi, N. Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polym. Sci. 2002, 83, 1482–1489. [Google Scholar] [CrossRef]
- Hu, S.; Wan, C.; Li, Y. Production and Characterization of Biopolyols and Polyurethane Foams from Crude Glycerol-Based Liquefaction of Soybean Straw. Bioresour. Technol. 2012, 103, 227–233. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.; Li, T.; Tong, X.; Li, Y. Polyurethane Foams Based on Crude Glycerol-Derived Biopolyols: One-Pot Preparation of Biopolyols with Branched Fatty Acid Ester Chains and Its Effects on Foam Formation and Properties. Polymer 2014, 55, 6529–6538. [Google Scholar] [CrossRef]
- Dziubiński, M.; Kiljański, T.; Sęk, J. Podstawy Reologii i Reometrii Płynów; Łódź, Unversity of Technology Publisher: Łódź, Poland, 2009. [Google Scholar]
- Deng, S.; Ting, Y.P. Characterization of PEI-Modified Biomass and Biosorption of Cu(II), Pb(II) and Ni(II). Water Res. 2005, 39, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
- Collier, W.E.; Schultz, T.P.; Kalasinsky, V.F. Infrared Study of Lignin: Reexamination of Aryl-Alkyl Ether C-O Stretching Peak Assignments. Holzforschung 1992, 46, 523–528. [Google Scholar] [CrossRef]
- Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Macquarrie, D.J. Microwave Assisted Decomposition of Cellulose: A New Thermochemical Route for Biomass Exploitation. Bioresour. Technol. 2010, 101, 3776–3779. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.X.; Liu, C.F.; Sun, R.C. Comparative Study of Alkali- and Acidic Organic Solvent-Soluble Hemicellulosic Polysaccharides from Sugarcane Bagasse. Carbohydr. Res. 2006, 341, 253–261. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of Short-Time Vibratory Ball Milling on the Shape of FT-IR Spectra of Wood and Cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, J.; Li, X.; Xiang, B. Synthesis and Characterization of Symmetrical Benzodifuranone Compounds with Femtosecond Time-Resolved Degenerate Four-Wave Mixing Technique. Opt. Commun. 2007, 272, 503–508. [Google Scholar] [CrossRef]
- Heredia-Guerrero, J.A.; Benítez, J.J.; Domínguez, E.; Bayer, I.S.; Cingolani, R.; Athanassiou, A.; Heredia, A.; Pickard, B.G. Infrared and Raman Spectroscopic Features of Plant Cuticles: A Review. Front. Plant Sci. 2014, 5, 305. [Google Scholar] [CrossRef]
- Huang, X.; De Hoop, C.F.; Xie, J.; Wu, Q.; Boldor, D.; Qi, J. High Bio-Content Polyurethane (PU) Foam Made from Bio-Polyol and Cellulose Nanocrystals (CNCs) via Microwave Liquefaction. Mater. Des. 2018, 138, 11–20. [Google Scholar] [CrossRef]
- Pasek-Allen, J.L.; Wilharm, R.K.; Bischof, J.C.; Pierre, V.C. NMR Characterization of Polyethylene Glycol Conjugates for Nanoparticle Functionalization. ACS Omega 2023, 8, 4331–4336. [Google Scholar] [CrossRef]
- Kaur, A.; Prakash, R.; Ali, A. 1H NMR Assisted Quantification of Glycerol Carbonate in the Mixture of Glycerol and Glycerol Carbonate. Talanta 2018, 178, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Wen, J.; Sun, R. Producing lignin-based polyols through microwave-assisted liquefaction for rigid polyurethane foam production. Materials 2015, 8, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Li, H.-Q.; Huang, H.-P.; Xu, J. Biopolyol preparation from liquefaction of grape seeds. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Hernández-Ramos, F.; Novi, V.; González Alriols, M.; Labidi, J.; Erdocia, X. Optimisation of lignin liquefaction with polyethylene glycol/glycerol through response surface methodology modeling. Ind. Crops Prod. 2023, 198, 116729. [Google Scholar] [CrossRef]
- French, A.; Thompson, A.; Davis, B. High-Purity Discrete PEG-Oligomer Crystals Allow Structural Insight. Angew. Chem. Int. Ed. 2009, 48, 1248–1252. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Klein, M.; Gosz, K.; Formela, K.; Haponiuk, J.; Piszczyk, Ł. Rheological Properties, Oxidative and Thermal Stability, and Potential Application of Biopolyols Prepared via Two-Step Process from Crude Glycerol. Polym. Degrad. Stab. 2018, 152, 29–42. [Google Scholar] [CrossRef]
- Gerakines, P.A.; Schutte, W.A.; Greenberg, J.M.; van Dishoeck, E.F. The Infrared Band Strengths of H2O, CO, and CO2 in Laboratory Simulations of Astrophysical Ice Mixtures. Astron. Astrophys. 1995, 296, 810–897. [Google Scholar]
Sample Name | Component [g] | ||||
---|---|---|---|---|---|
Cellulose | Glicerol | PEG400 | Catalyst | NaOH | |
130_H2SO4 | 40 | 200 | 200 | 12 | 9.7 |
150_H2SO4 | 40 | 200 | 200 | 12 | 9.7 |
170_H2SO4 | 40 | 200 | 200 | 12 | 9.7 |
130_Nafion | 40 | 200 | 200 | 24 | - |
150_Nafion | 40 | 200 | 200 | 24 | - |
170_Nafion | 40 | 200 | 200 | 24 | - |
Sample Code | Function | τ0 [Pa] | K [Pa*sn] | n [-] | R2 |
---|---|---|---|---|---|
130_H2SO4 | y = 1.4039 * x1.0142 | 0 | 1.4039 | 1.0142 | 0.9999 |
150_H2SO4 | y = 2.9876 * x1.0048 | 0 | 2.9876 | 1.0048 | 0.9999 |
170_H2SO4 | y = 15.2534 * x0.9758 | 0 | 15.2534 | 0.9758 | 0.9999 |
130_Nafion | y = 0.0227 * x.1.3470 | 0 | 0.0227 | 1.3470 | 0.9954 |
150_Nafion | y = 0.1086 * x.1.1732 | 0 | 0.1086 | 1.1732 | 0.9970 |
170_Nafion | y = 0.3170 * x.1.0182 | 0 | 0.3170 | 1.0182 | 0.9952 |
Temperature [°C] | |||||
---|---|---|---|---|---|
T2% | T5% | Tmax1 | Tmax2 | OOT | |
GLY_PEG400 | 133.4 | 162.0 | 213.1 | 313.5 | 194.2 |
130_H2SO4 | 148.5 | 172.4 | 211.3 | 346.6 | 193.2 |
150_H2SO4 | 154.6 | 178.7 | 211.4 | 334.6 | 198.8 |
170_H2SO4 | 177.0 | 206.2 | 300.2 | 373.9 | 228.2 |
130_Nafion | 93.8 | 155.7 | 209.2 | 325.5 | 170.0 |
150_Nafion | 106.8 | 153.1 | 208.8 | 347.3 | 185.1 |
170_Nafion | 125.5 | 157.6 | 212.9 | 335.9 | 198.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmela, P.; Kazimierski, P. Comparison of the Efficiency of Hetero- and Homogeneous Catalysts in Cellulose Liquefaction. Materials 2023, 16, 6135. https://doi.org/10.3390/ma16186135
Kosmela P, Kazimierski P. Comparison of the Efficiency of Hetero- and Homogeneous Catalysts in Cellulose Liquefaction. Materials. 2023; 16(18):6135. https://doi.org/10.3390/ma16186135
Chicago/Turabian StyleKosmela, Paulina, and Paweł Kazimierski. 2023. "Comparison of the Efficiency of Hetero- and Homogeneous Catalysts in Cellulose Liquefaction" Materials 16, no. 18: 6135. https://doi.org/10.3390/ma16186135
APA StyleKosmela, P., & Kazimierski, P. (2023). Comparison of the Efficiency of Hetero- and Homogeneous Catalysts in Cellulose Liquefaction. Materials, 16(18), 6135. https://doi.org/10.3390/ma16186135