Analysis of the Microstructure and Porosity of Cement Pastes with Functionalized Nanosilica with Different Contents of Aminosilane
Abstract
:1. Introduction
2. Materials and Methods
- NSF4—containing 4 mL of APTES (NSF low in APTES);
- NSF8—containing 8 mL of APTES (NSF high in APTES).
3. Results and Discussions
3.1. Characterization of Functionalized Nanosilica
3.2. Microstructure and Porosity of Cement Pastes
3.2.1. Isothermal Conduction Calorimetry
3.2.2. Thermogravimetry
3.2.3. Compressive Strength
3.2.4. Mercury Intrusion Porosimetry
3.2.5. Computed Tomography
4. Conclusions
- The method used for functionalization was effective in grafting aminosilane functional groups at different levels on the surface of the studied nanosilicas.
- The microstructural analysis techniques proved that the aminosilane groups were grafted and that there was a change in the NSF characterization as the functionalization content changed. This result was pointed out by DLS (with an increase in hydrodynamic radius), TG (increase in mass loss), and FTIR (accentuated bands and changes in OH bonds).
- Sample P-NSF 4 had a smaller amount of additive to reach the established consistency index in relation to P-NS. The P-NSF 8 sample required a larger amount of additive. For this sample, the increase in the functionalization ratio led to the adsorption of more water within the NSF 8 which led to the need for a higher SP content than the P-NS.
- The NSF’s initially acted as setting retardants within the cementitious composites, with the induction period being longer in samples with NSF with a higher proportion of aminosilane (NSF 8). NSF 4 had the shortest induction period compared to NSF8. After the induction period, the cement hydration reactions were similar to the NS sample in terms of heat development.
- The extension of the induction period provoked in the P-NSF4 and P-NSF8 pastes a delay in the gain of strength in initial ages, but with recovery of strength after 7 days. The P-NSF 4 sample showed compressive strength at 2 days superior to the P-REF sample and close to P-NS. Samples P-NSF4 and P-NSF8 showed compressive strength higher than sample P-REF and higher than P-NS at 28 days.
- Through the TGA test, we observed that the samples with NSF with different levels of amine group altered the hydration kinetics, as evidenced by the CH content related to the delay of the hydration and pozzolanic reactions, as well as the hydrated phases of the pastes at 28 days of hydration.
- Porosimetry by mercury intrusion showed that the use of NSF4 and NSF8 caused pore refinement similar or even superior to the P-NS sample. The P-NSF4 paste had the lowest accumulated intruded volume, indicating a smaller volume of voids compared to the other pastes. On the other hand, the computed tomography test observed an increase in the macropositivity of the pastes with NSF8, probably due to the higher incorporation of air due to the larger amount of superplasticizer additive incorporated in these pastes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ustabas, I.; Erdogdu, S.; Omur, I.; Yilmaz, E. Pozzolanic Effect on the Hydration Heat of Cements Incorporating Fly Ash, Obsidian, and Slag Additives. Adv. Civ. Eng. 2021, 2021, 2342896. [Google Scholar] [CrossRef]
- Ustabaş, İ.; Kaya, A. Comparing the Pozzolanic Activity Properties of Obsidian to Those of Fly Ash and Blast Furnace Slag. Constr. Build. Mater. 2018, 164, 297–307. [Google Scholar] [CrossRef]
- Ganesh Rathod, N.; Moharana, N.C.; Parashar, S.K.S. Effect of Nano-SiO2 on Physical and Electrical Properties of PPC Cement Using Complex Impedance Spectroscopy. Mater. Today Proc. 2018, 5, 193–199. [Google Scholar] [CrossRef]
- Li, G. Properties of High-Volume Fly Ash Concrete Incorporating Nano-SiO2. Cem. Concr. Res. 2004, 34, 1043–1049. [Google Scholar] [CrossRef]
- Raheem, A.A.; Abdulwahab, R.; Kareem, M.A. Incorporation of Metakaolin and Nanosilica in Blended Cement Mortar and Concrete—A Review. J. Clean. Prod. 2021, 290, 125852. [Google Scholar] [CrossRef]
- Varghese, L.; Kanta Rao, V.V.L.; Parameswaran, L. Nanosilica-Added Concrete: Strength and Its Correlation with Time-Dependent Properties. Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 85–94. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, J.; Song, G. Effect of Complexation on the Zeta Potential of Silica Powder. Powder Technol. 2003, 134, 218–222. [Google Scholar] [CrossRef]
- Gu, Y.; Ran, Q.; Shu, X.; Yu, C.; Chang, H.; Liu, J. Synthesis of NanoSiO2@PCE Core-Shell Nanoparticles and Its Effect on Cement Hydration at Early Age. Constr. Build. Mater. 2016, 114, 673–680. [Google Scholar] [CrossRef]
- Althoey, F.; Zaid, O.; Martínez-garcía, R.; Alsharari, F. Impact of Nano-Silica on the Hydration, Strength, Durability, and Microstructural Properties of Concrete: A State-of-the-Art Review Case Studies in Construction Materials Impact of Nano-Silica on the Hydration, Strength, Durability, and Microstruct. Case Stud. Constr. Mater. 2023, 18, e01997. [Google Scholar] [CrossRef]
- Meng, T.; Hong, Y.; Wei, H.; Xu, Q. Effect of Nano-SiO2 with Different Particle Size on the Hydration Kinetics of Cement. Thermochim. Acta 2019, 675, 127–133. [Google Scholar] [CrossRef]
- Collodetti, G.; Gleize, P.J.P.; Monteiro, P.J.M. Exploring the Potential of Siloxane Surface Modified Nano-SiO2 to Improve the Portland Cement Pastes Hydration Properties. Constr. Build. Mater. 2014, 54, 99–105. [Google Scholar] [CrossRef]
- Vasconcellos, J.S.; Martins, G.L.O.; de Almeida Ribeiro Oliveira, G.; Lião, L.M.; da Silva Rêgo, J.H.; Sartoratto, P.P.C. Effect of Amine Functionalized Nanosilica on the Cement Hydration and on the Physical-Mechanical Properties of Portland Cement Pastes. J. Nanopartic. Res. 2020, 22, 234. [Google Scholar] [CrossRef]
- Gu, Y.; Ran, Q.; She, W.; Liu, J. Modifying Cement Hydration with NS@PCE Core-Shell Nanoparticles. Adv. Mater. Sci. Eng. 2017, 2017, 3823621. [Google Scholar] [CrossRef]
- Monasterio, M.; Gaitero, J.J.; Erkizia, E.; Guerrero Bustos, A.M.; Miccio, L.A.; Dolado, J.S.; Cerveny, S. Effect of Addition of Silica- and Amine Functionalized Silica-Nanoparticles on the Microstructure of Calcium Silicate Hydrate (C-S-H) Gel. J. Colloid Interface Sci. 2015, 450, 109–118. [Google Scholar] [CrossRef]
- Guo, L.; Wu, J.; Wang, H. Mechanical and Perceptual Characterization of Ultra-High-Performance Cement-Based Composites with Silane-Treated Graphene Nano-Platelets. Constr. Build. Mater. 2020, 240, 117926. [Google Scholar] [CrossRef]
- Li, G.; Yue, J.; Guo, C.; Ji, Y. Influences of Modified Nanoparticles on Hydrophobicity of Concrete with Organic Film Coating. Constr. Build. Mater. 2018, 169, 1–7. [Google Scholar] [CrossRef]
- Ren, C.; Hou, L.; Li, J.; Lu, Z.; Niu, Y. Preparation and Properties of Nanosilica-Doped Polycarboxylate Superplasticizer. Constr. Build. Mater. 2020, 252, 119037. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. Concentration of Hydroxyl Groups on the Surface of Amorphous Silicas. Langmuir 1987, 3, 316–318. [Google Scholar] [CrossRef]
- Gu, Y.; Wei, Z.; Ran, Q.; Shu, X.; Lv, K.; Liu, J. Characterizing Cement Paste Containing SRA Modified NanoSiO2 and Evaluating Its Strength Development and Shrinkage Behavior. Cem. Concr. Compos. 2017, 75, 30–37. [Google Scholar] [CrossRef]
- Rong, Z.; Zhao, M.; Wang, Y. Effects of Modified Nano-SiO2 Particles on Properties of High-Performance Cement-Based Composites. Materials 2020, 13, 646. [Google Scholar] [CrossRef]
- Khalil, M.; Saeed, S.; Ahmad, Z. Mechanical and Thermal Properties of Polyimide/Silica Hybrids with Imide-Modified Silica Network Structures. Wiley Intersci. 2007, 118, 1534–1540. [Google Scholar] [CrossRef]
- Berriozabal, G.; De Miguel, Y.R. Synthesis and Characterisation of Silica Nanoparticles Bearing Different Functional Groups Obtained via a Two-Stage Method. Phys. Status Solidi Curr. Top. Solid State Phys. 2010, 7, 2692–2696. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Zhao, J.; Wang, D. Potential Effect of Surface Modified Nano-SiO2 with PDDA on the Cement Paste Early Hydration. ChemistrySelect 2020, 5, 3159–3163. [Google Scholar] [CrossRef]
- Liu, X.; Feng, P.; Shu, X.; Ran, Q. Effects of Highly Dispersed Nano-SiO2 on the Microstructure Development of Cement Pastes. Mater. Struct. Constr. 2020, 53, 4. [Google Scholar] [CrossRef]
- Kantro, D.L. Influence of Water-Reducing Admixtures on Properties of Cement Paste—A Miniature Slump Test. Cem. Concr. Aggreg. 1980, 2, 95–102. [Google Scholar] [CrossRef]
- Lavergne, F.; Belhadi, R.; Carriat, J.; Ben Fraj, A. Effect of Nano-Silica Particles on the Hydration, the Rheology and the Strength Development of a Blended Cement Paste. Cem. Concr. Compos. 2019, 95, 42–55. [Google Scholar] [CrossRef]
- Agostinho, L.B.; Borges, J.G.; da Silva, E.F.; Cupertino, D.V.M.R. A Calorimetry Analysis of Portland Cement Pastes Containing Superabsorbent Polymer (Sap) and Nanosilica (Ns). Rev. Mater. 2020, 25, 1–12. [Google Scholar] [CrossRef]
- Avet, F.; Scrivener, K. Cement and Concrete Research Investigation of the Calcined Kaolinite Content on the Hydration of Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2018, 107, 124–135. [Google Scholar] [CrossRef]
- Fraga, Y.S.B.; da Silva Rego, J.H.; Capuzzo, V.M.S.; da Silva Andrade, D.; Morais, P.C. Ultrasonication and Synergistic Effects of Silica Fume and Colloidal Nanosilica on the C–S–H Microstructure. J. Build. Eng. 2020, 32, 101702. [Google Scholar] [CrossRef]
- NBR 7215; Cimento Portland—Determinação Da Resistência à Compressão [Portland Cement—Determination of Compressive Strength]. ABNT: São Paulo, Brazil, 2019.
- Rashad, A.M. A Comprehensive Overview about the Effect of Nano-SiO2 on Some Properties of Traditional Cementitious Materials and Alkali-Activated Fly Ash. Constr. Build. Mater. 2014, 52, 437–464. [Google Scholar] [CrossRef]
- Vasconcellos, J.S.; Fraga, Y.S.B.; da Silva Rêgo, J.H.; Sartoratto, P.P.C.; Rojas, M.F. Hydration, Mechanical Performance and Porosity of Portland Cement Pastes with Functionalized Nanosilica with APTES. Dev. Built Environ. 2023, 14, 100157. [Google Scholar] [CrossRef]
- Brace, H.; Garcia-Taengua, E. Superplasticizer—Nanosilica Compatibility: Assessment and Optimization. ACI Mater. J. 2019, 116, 95–103. [Google Scholar] [CrossRef]
- Perez, G.; Gaitero, J.J.; Erkizia, E.; Jimenez, I.; Guerrero, A. Characterisation of Cement Pastes with Innovative Self-Healing System Based in Epoxy-Amine Adhesive. Cem. Concr. Compos. 2015, 60, 55–64. [Google Scholar] [CrossRef]
- Monteagudo, S.M.; Moragues, A.; Gálvez, J.C.; Casati, M.J.; Reyes, E. The Degree of Hydration Assessment of Blended Cement Pastes by Differential Thermal and Thermogravimetric Analysis. Morphological Evolution of the Solid Phases. Thermochim. Acta 2014, 592, 37–51. [Google Scholar] [CrossRef]
- Singh, L.P.; Bhattacharyya, S.K.; Shah, S.P.; Mishra, G.; Sharma, U. Studies on Early Stage Hydration of Tricalcium Silicate Incorporating Silica Nanoparticles: Part II. Constr. Build. Mater. 2016, 102, 943–949. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Liu, Y.; Ge, C.; Guo, L.; Shu, X.; Liu, J. Synergistic Effects of Silica Nanoparticles/Polycarboxylate Superplasticizer Modified Graphene Oxide on Mechanical Behavior and Hydration Process of Cement Composites. RSC Adv. 2017, 7, 16688–16702. [Google Scholar] [CrossRef]
- Frías, M.; Martínez-Ramírez, S.; de la Villa, R.V.; Fernández-Carrasco, L.; García, R. Reactivity in Cement Pastes Bearing Fine Fraction Concrete and Glass from Construction and Demolition Waste: Microstructural Analysis of Viability. Cem. Concr. Res. 2021, 148, 106531. [Google Scholar] [CrossRef]
- Rupasinghe, M.; San Nicolas, R.; Mendis, P.; Sofi, M.; Ngo, T. Investigation of Strength and Hydration Characteristics in Nano-Silica Incorporated Cement Paste. Cem. Concr. Compos. 2017, 80, 17–30. [Google Scholar] [CrossRef]
- Martins, G.L.; Fraga, Y.S.; Vasconcellos, J.S.; da SRêgo, J.H. Synthesis and Characterization of Functionalized Nanosilica for Cementitious Composites: Review. J. Nanopartic. Res. 2020, 22, 338. [Google Scholar] [CrossRef]
- Puentes, J.; Barluenga, G.; Palomar, I. Effect of Silica-Based Nano and Micro Additions on SCC at Early Age and on Hardened Porosity and Permeability. Constr. Build. Mater. 2015, 81, 154–161. [Google Scholar] [CrossRef]
- Lo, F.C.; Lee, M.G.; Lo, S.L. Effect of Coal Ash and Rice Husk Ash Partial Replacement in Ordinary Portland Cement on Pervious Concrete. Constr. Build. Mater. 2021, 286, 122947. [Google Scholar] [CrossRef]
Paste | Material | Mini Slump (mm) | |||||
---|---|---|---|---|---|---|---|
Cement (g) | NS or NSF | Superplasticising Additive | Water (g) | ||||
Solids (g) | Aqueous Suspension (g) | (g) | (%) by Mass of Cement | ||||
P-REF | 2000.00 | 0.00 | 0.00 | 5.60 | 0.28 | 695.94 | 119.72 |
P-NS | 1980.00 | 20.00 | 61.48 | 16.00 | 0.80 | 646.91 | 114.28 |
P-NSF4 | 1980.00 | 20.00 | 128.87 | 14.00 | 0.70 | 580.97 | 116.76 |
P-NSF8 | 1980.00 | 20.00 | 137.93 | 25.00 | 1.25 | 563.93 | 114.23 |
Sample | Color | Specific Mass (g/cm3) | pH | Loss of Ignition (%) | Solid Content (%) |
---|---|---|---|---|---|
NS | Transparent | 1.23 | 10.44 | 5.40 | 32.53 |
NSF4 | White with transparency | 1.19 | 10.05 | 8.56 | 15.52 |
NSF8 | Opaque white | 1.17 | 9.52 | 16.61 | 14.01 |
Sample | TGA | DLS | ||
---|---|---|---|---|
Total Mass Loss (%) | Functionalization Content (%) | Hydrodynamic Diameter (nm) | Size Distribution Area (%) | |
NS | 5.19 | 0.00 | 21.74 | 100.00 |
NSF4 | 8.41 | 3.22 | 26.04 (A1) | 95.10 |
3516.00 (A2) | 4.90 | |||
NSF8 | 14.76 | 9.57 | 203.50 (A1) | 39.30 |
858.80 (A2) | 56.70 |
Age | Content | Paste | |||
---|---|---|---|---|---|
P-REF | P-NS | P-NSF4 | P-NSF8 | ||
2 days | CH content in relation to the total mass of the sample | 10.43 | 9.63 | 11.11 | 6.84 |
CH index in relation to REF | 100.0% | 92.3% | 106.5% | 65.6% | |
7 days | CH content in relation to the total mass of the sample | 11.48 | 9.42 | 11.19 | 8.94 |
CH index in relation to REF | 100.0% | 82.1% | 97.5% | 77.9% | |
28 days | CH content in relation to the total mass of the sample | 12.16 | 9.33 | 11.13 | 9.88 |
CH index in relation to REF | 100.0% | 76.7% | 91.5% | 81.3% |
Paste | Mass Loss in the 50 °C to 400 °C Range (%) |
---|---|
P-REF | 6.66 |
P-NS | 7.93 |
P-NSF4 | 7.80 |
P-NSF8 | 7.97 |
Paste | Compressive Strength (MPa) | Standard Deviation (MPa) | p-Value | Group | |||
---|---|---|---|---|---|---|---|
2 days | Group 1 | Group 2 | Group 3 | Group 4 | |||
P-REF | 34.7 | 0.57 | 0.0000 | X | |||
P-NS | 38.5 | 0.85 | X | ||||
P-NSF4 | 36.7 | 0.06 | X | ||||
P-NSF8 | 0.0 | 0.00 | X | ||||
7 days | Group 1 | Group 2 | Group 3 | ||||
P-REF | 48.2 | 1.03 | 0.0001 | X | |||
P-NS | 51.6 | 0.66 | X | ||||
P-NSF4 | 52.6 | 0.70 | X | ||||
P-NSF8 | 46.3 | 1.03 | X | ||||
28 days | Group 1 | Group 2 | |||||
P-REF | 50.4 | 1.77 | 0.0055 | X | |||
P-NS | 56.2 | 1.13 | X | X | |||
P-NSF4 | 62.4 | 1.72 | X | ||||
P-NSF8 | 62.2 | 4.80 | X |
Paste | Total Porosity (%) | Average Pore Diameter (nm) | Intruded Mercury Volume (mL/g) | |
---|---|---|---|---|
Large Capillary (10.000–50 nm) | Medium Capillary (50–10 nm) | |||
P-REF | 18.72 | 16.7 | 0.00910 | 0.07590 |
P-NS | 18.20 | 15.4 | 0.00670 | 0.07840 |
P-NSF4 | 17.61 | 14.9 | 0.00650 | 0.07070 |
P-NSF8 | 18.07 | 15.7 | 0.00800 | 0.07390 |
Pastes | P-REF | P-NS | P-NSF4 | P-NSF8 | |
---|---|---|---|---|---|
Average pore volume (mm3) | 0.031 | 0.026 | 0.022 | 0.047 | |
Pore volume distribution (%) | >0.5 mm3 | 0.17 | 0.42 | 0.22 | 0.68 |
0.5–0.1 mm3 | 4.36 | 2.06 | 1.97 | 8.22 | |
0.1–0.05 mm3 | 6.18 | 4.64 | 3.94 | 11.75 | |
0.05–0.01 mm3 | 89.34 | 92.86 | 93.85 | 79.34 | |
Superplasticizer additive content (% cement mass) | 0.28% | 0.80% | 0.70% | 1.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, G.L.O.; Fraga, Y.S.B.; de Paula, A.; Rêgo, J.H.d.S.; Terrades, A.M.; Rojas, M.F. Analysis of the Microstructure and Porosity of Cement Pastes with Functionalized Nanosilica with Different Contents of Aminosilane. Materials 2023, 16, 5675. https://doi.org/10.3390/ma16165675
Martins GLO, Fraga YSB, de Paula A, Rêgo JHdS, Terrades AM, Rojas MF. Analysis of the Microstructure and Porosity of Cement Pastes with Functionalized Nanosilica with Different Contents of Aminosilane. Materials. 2023; 16(16):5675. https://doi.org/10.3390/ma16165675
Chicago/Turabian StyleMartins, Gabriel Lima Oliveira, Yuri Sotero Bomfim Fraga, Andréia de Paula, João Henrique da Silva Rêgo, Amparo Moragues Terrades, and Moisés Frías Rojas. 2023. "Analysis of the Microstructure and Porosity of Cement Pastes with Functionalized Nanosilica with Different Contents of Aminosilane" Materials 16, no. 16: 5675. https://doi.org/10.3390/ma16165675
APA StyleMartins, G. L. O., Fraga, Y. S. B., de Paula, A., Rêgo, J. H. d. S., Terrades, A. M., & Rojas, M. F. (2023). Analysis of the Microstructure and Porosity of Cement Pastes with Functionalized Nanosilica with Different Contents of Aminosilane. Materials, 16(16), 5675. https://doi.org/10.3390/ma16165675