Shade, Aging and Spatial-Dependent Variation of Elastoplastic and Viscoelastic Characteristics in a Dental, Submicron Hybrid CAD/CAM Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Three-Point Flexural Test
2.3. Fractography Analysis
2.4. Instrumented Indentation Test (IIT)
2.5. Statistical Analyses
3. Results
3.1. Three-Point Flexural Test and Fractography Analysis
Fractography Analysis
3.2. Instrumented Indentation Test (IIT): Quasi-Static Approach
3.3. Instrumented Indentation Test (IIT): Dynamic Mechanical Analysis (DMA)
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilie, N. Altering of optical and mechanical properties in high-translucent CAD-CAM resin composites during aging. J. Dent. 2019, 85, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Thieu, M.K.L.; Johnsen, G.F.; Reseland, J.E.; Haugen, H.J. Can CAD/CAM resin blocks be considered as substitute for conventional resins? Dent. Mater. 2017, 33, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Suh, B.I. New concepts and technology for processing of indirect composites. Compend. Contin. Educ. Dent. 2003, 24, 40–42. [Google Scholar]
- Ruse, N.D.; Sadoun, M.J. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef]
- Mourouzis, P.; Vladitsi, M.; Nikolaou, C.; Kalogiouri, N.P.; Samanidou, V.; Tolidis, K. Monomers Release from Direct and Indirect Resin-Based Restorations after Immersion in Common Beverages. Polymers 2022, 14, 5158. [Google Scholar] [CrossRef] [PubMed]
- Mourouzis, P.; Diamantopoulou, E.I.; Plastiras, O.; Samanidou, V.; Tolidis, K. Elution of Monomers From CAD-CAM Materials and Conventional Resin Composite in Distilled Water and Artificial Saliva. Oper. Dent. 2022, 47, E241–E252. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, A.C.; Hahnel, S.; Konig, A.; Brambilla, E. Resin composite blocks for dental CAD/CAM applications reduce biofilm formation in vitro. Dent. Mater. 2020, 36, 603–616. [Google Scholar] [CrossRef]
- Ilie, N. Frequency-related viscoelastic properties in high translucent CAD-CAM resin-based composites. J. Mech. Behav. Biomed. Mater. 2021, 118, 104427. [Google Scholar] [CrossRef]
- Karaer, O.; Yamaguchi, S.; Imazato, S.; Terzioglu, H. In Silico Finite Element Analysis of Implant-Supported CAD-CAM Resin Composite Crowns. J. Prosthodont. 2023, 32, 259–266. [Google Scholar] [CrossRef]
- Ilie, N. Spatial Distribution of the Micro-Mechanical Properties in High-Translucent CAD/CAM Resin-Composite Blocks. Materials 2020, 13, 3352. [Google Scholar] [CrossRef]
- Papathanasiou, I.; Zinelis, S.; Papavasiliou, G.; Kamposiora, P. Effect of aging on color, gloss and surface roughness of CAD/CAM composite materials. J. Dent. 2023, 130, 104423. [Google Scholar] [CrossRef]
- Ducke, V.M.; Ilie, N. Aging behavior of high-translucent CAD/CAM resin-based composite blocks. J. Mech. Behav. Biomed. Mater. 2021, 115, 104269. [Google Scholar] [CrossRef]
- Elraggal, A.; Afifi, R.R.; Alamoush, R.A.; Raheem, I.A.; Watts, D.C. Effect of acidic media on flexural strength and fatigue of CAD-CAM dental materials. Dent. Mater. 2023, 39, 57–69. [Google Scholar] [CrossRef]
- Quinn, G.D. Room-Temperature Flexure Fixture for Advanced Ceramics. NISTIR 4877. Natl. Inst. Stand. Technol. 1992. [Google Scholar]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials, ISO/TC 106/SC 1 Filling and Restorative Materials. ISO: Geneva, Switzerland, 2019.
- Orr, L. Practical analysis of fractures in glass windows. Mater. Res. Stand. 1972, 12, 21. [Google Scholar]
- ISO 14577-1:2015; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. ISO: Geneva, Switzerland, 2015; p. 46.
- Ilie, N. Cytotoxic, Elastic-Plastic and Viscoelastic Behavior of Aged, Modern Resin-Based Dental Composites. Bioengineering 2023, 10, 235. [Google Scholar] [CrossRef]
- Po, J.M.; Kieser, J.A.; Gallo, L.M.; Tesenyi, A.J.; Herbison, P.; Farella, M. Time-frequency analysis of chewing activity in the natural environment. J. Dent. Res. 2011, 90, 1206–1210. [Google Scholar] [CrossRef]
- Weihull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 290–293. [Google Scholar]
- Kabetani, T.; Ban, S.; Mine, A.; Ishihara, T.; Nakatani, H.; Yumitate, M.; Yamanaka, A.; Ishida, M.; Matsumoto, M.; Meerbeek, B.V.; et al. Four-year clinical evaluation of CAD/CAM indirect resin composite premolar crowns using 3D digital data: Discovering the causes of debonding. J. Prosthodont. Res. 2022, 66, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Inomata, M.; Harada, A.; Kasahara, S.; Kusama, T.; Ozaki, A.; Katsuda, Y.; Egusa, H. Potential complications of CAD/CAM-produced resin composite crowns on molars: A retrospective cohort study over four years. PLoS ONE 2022, 17, e0266358. [Google Scholar] [CrossRef] [PubMed]
- Shortall, A.C.; Palin, W.M.; Burtscher, P. Refractive index mismatch and monomer reactivity influence composite curing depth. J. Dent. Res. 2008, 87, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.D. Fractography of Ceramics and Glasses; National Institute of Standards and Technology: Washington, DC, USA, 2007.
- Quinn, J.B.; Quinn, G.D. Material properties and fractography of an indirect dental resin composite. Dent. Mater. 2010, 26, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Ghelbere, R.; Ilie, N. Validation of the Orr theory in dental resin-based composites: A fractographic approach. J. Mech. Behav. Biomed. Mater. 2023, 144, 105982. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Holloway, D. On the shape and size of the fracture zones on glass fracture surfaces. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1966, 14, 731–743. [Google Scholar] [CrossRef]
- Yoffe, E.H. LXXV. The moving griffith crack. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1951, 42, 739–750. [Google Scholar] [CrossRef]
- Mecholsky, J.; Rice, R.; Freiman, S. Prediction of fracture energy and flaw size in glasses from measurements of mirror size. J. Am. Ceram. Soc. 1974, 57, 440–443. [Google Scholar] [CrossRef]
- Kirchner, H.P.; Conway, J., Jr. Criteria for Crack Branching in Cylindrical Rods: II, Flexure. J. Am. Ceram. Soc. 1987, 70, 419–425. [Google Scholar] [CrossRef]
- Bansal, G.K. On fracture mirror formation in glass and polycrystalline ceramics. Philos. Mag. 1977, 35, 935–944. [Google Scholar] [CrossRef]
- Mecholsky, J.J.; Freimam, S.W.; Rice, R.W. Fracture surface analysis of ceramics. J. Mater. Sci. 1976, 11, 1310–1319. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Quinn, J.B.; Quinn, G.D.; Wiskott, H.A. Fractographic ceramic failure analysis using the replica technique. Dent. Mater. 2007, 23, 1397–1404. [Google Scholar] [CrossRef]
- Kelly, J.R.; Campbell, S.D.; Bowen, H.K. Fracture-surface analysis of dental ceramics. J. Prosthet. Dent. 1989, 62, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Webster, G.A. Role of Residual Stress in Engineering Applications. Mater. Sci. Forum 2000, 347–349, 1–11. [Google Scholar] [CrossRef]
- Freund, M.; Munksgaard, E.C. Enzymatic degradation of BISGMA/TEGDMA-polymers causing decreased microhardness and greater wear in vitro. Scand. J. Dent. Res. 1990, 98, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Delaviz, Y.; Banh, M.; Guo, Y.; Santerre, J.P. Biodegradation of composite resin with ester linkages: Identifying human salivary enzyme activity with a potential role in the esterolytic process. Dent. Mater. 2014, 30, 848–860. [Google Scholar] [CrossRef]
- Kirby, A.J. Chapter 2 Hydrolysis and Formation of Esters of Organic Acids. Compr. Chem. Kinet. 1972, 10, 57–207. [Google Scholar]
- Finer, Y.; Santerre, J.P. Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. J. Biomed. Mater. Res. Part A 2007, 81, 75–84. [Google Scholar] [CrossRef]
- Cavalcante, L.M.; Ferraz, L.G.; Antunes, K.B.; Garcia, I.M.; Schneider, L.F.J.; Collares, F.M. Silane content influences physicochemical properties in nanostructured model composites. Dent. Mater. 2021, 37, e85–e93. [Google Scholar] [CrossRef]
- Shaw, T.; MacKnight, J. Introduction to Polymer Viscoelasticity, 3rd ed.; WILEY Interscience: Hoboken, NJ, USA, 2015; p. 316. [Google Scholar]
- Kê, T.-S. Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals. Phys. Rev. 1947, 71, 533–546. [Google Scholar] [CrossRef]
Shade (Translucency) | LOT | Composition | wt% | vol% | |
---|---|---|---|---|---|
Matrix | Filler | ||||
BL ST (super translucent) | K82874 | BisGMA UDMA TEGDMA | BaO-Al2O3-SiO2 SiO2 | 70.7 | 51.5 |
C2 LT (low translucent) | K76951 | ||||
BL LT (low translucent) | K59845 |
Shade | Aging | FS, MPa | A, MPam | Weibull Parameters | E, GPa | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | m | R2 | Mean | SD | |||
BL ST | 24 h | 232.2 a | 15.4 | 2.46–2.61 | 16.5–19.6 | 0.97 | 7.5 a | 0.6 |
TA | 203.1 b | 17.1 | 2.26–2.41 | 13.4–15.3 | 0.98 | 7.2 b | 0.4 | |
C2 LT | 24 h | 232.5 a | 13.2 | 2.43–2.57 | 18.6–22.7 | 0.96 | 7.5 a | 0.4 |
TA | 210.4 b | 14.5 | 2.43–2.60 | 14.6–19.3 | 0.92 | 6.6 b | 1.0 | |
BL LT | 24 h | 229.3 a | 25.0 | 2.44–2.58 | 8.1–11.2 | 0.90 | 7.3 a | 0.6 |
TA | 205.0 b | 21.5 | 2.28–2.45 | 9.9–12.1 | 0.96 | 7.2 b | 0.4 |
Shade | Aging | HM N/mm2 | HV N/mm2 | EIT GPa | μIT % | We µJ | Wtot µJ | Cr % | |
---|---|---|---|---|---|---|---|---|---|
BL ST | dry | Mean | 572.4 | 87.2 | 12.4 | 48.3 | 1.3 | 2.7 | 4.1 |
SD | 3.5 | 0.6 | 0.1 | 0.3 | 0.01 | 0.01 | 0.02 | ||
24 h | Mean | 541.0 | 82.6 | 11.6 | 48.9 | 1.4 | 2.8 | 4.2 | |
SD | 2.7 | 0.6 | 0.0 | 0.2 | 0.00 | 0.01 | 0.04 | ||
TA | Mean | 533.5 | 80.2 | 11.7 | 47.8 | 1.3 | 2.8 | 4.3 | |
SD | 5.7 | 0.8 | 0.2 | 0.5 | 0.0 | 0.0 | 0.0 | ||
C2 LT | dry | Mean | 554.0 | 83.6 | 12.1 | 47.9 | 1.3 | 2.8 | 4.3 |
SD | 6.9 | 1.2 | 0.1 | 0.3 | 0.01 | 0.02 | 0.05 | ||
24 h | Mean | 545.7 | 81.4 | 12.1 | 47.7 | 1.3 | 2.8 | 4.4 | |
SD | 7.0 | 1.2 | 0.1 | 0.2 | 0.01 | 0.01 | 0.04 | ||
TA | Mean | 514.1 | 76.4 | 11.3 | 48.0 | 1.4 | 2.9 | 4.6 | |
SD | 7.8 | 1.0 | 0.2 | 0.5 | 0.02 | 0.02 | 0.02 | ||
BL LT | dry | Mean | 562.6 | 85.8 | 12.2 | 48.6 | 1.3 | 2.7 | 4.1 |
SD | 5.8 | 1.1 | 0.1 | 0.3 | 0.01 | 0.01 | 0.03 | ||
24 h | Mean | 535.9 | 80.0 | 11.8 | 48.0 | 1.3 | 2.8 | 4.4 | |
SD | 3.5 | 0.5 | 0.1 | 0.2 | 0.0 | 0.02 | 0.03 | ||
TA | Mean | 514.5 | 76.7 | 11.3 | 47.4 | 1.4 | 2.9 | 4.5 | |
SD | 7.1 | 1.0 | 0.2 | 0.4 | 0.02 | 0.01 | 0.03 |
Parameter | HM N/mm2 | HV N/mm2 | EIT GPa | μIT % | We µJ | Wtot µJ | Cr % |
---|---|---|---|---|---|---|---|
Aging | 0.905 | 0.926 | 0.829 | 0.332 | 0.593 | 0.926 | 0.931 |
Shade | 0.471 | 0.674 | 0.112 | 0.292 | n.s. | 0.375 | 0.883 |
Aging × Shade | 0.431 | 0.380 | 0.531 | 0.452 | 0.460 | 0.558 | 0.739 |
Parameter | HIT | E′ | E″ | tan δ |
---|---|---|---|---|
Aging | 0.962 | 0.799 | 0.127 | 0.349 |
Shade | 0.199 | 0.13 | 0.029 | 0.011 |
Frequency | 0.575 | 0.839 | 0.880 | 0.841 |
Aging × Shade | 0.163 | 0.117 | 0.019 | 0.016 |
Frequency × Shade | n.s. | 0.009 | 0.007 | 0.003 |
Aging × Frequency | n.s. | 0.058 | 0.037 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilie, N. Shade, Aging and Spatial-Dependent Variation of Elastoplastic and Viscoelastic Characteristics in a Dental, Submicron Hybrid CAD/CAM Composite. Materials 2023, 16, 5654. https://doi.org/10.3390/ma16165654
Ilie N. Shade, Aging and Spatial-Dependent Variation of Elastoplastic and Viscoelastic Characteristics in a Dental, Submicron Hybrid CAD/CAM Composite. Materials. 2023; 16(16):5654. https://doi.org/10.3390/ma16165654
Chicago/Turabian StyleIlie, Nicoleta. 2023. "Shade, Aging and Spatial-Dependent Variation of Elastoplastic and Viscoelastic Characteristics in a Dental, Submicron Hybrid CAD/CAM Composite" Materials 16, no. 16: 5654. https://doi.org/10.3390/ma16165654
APA StyleIlie, N. (2023). Shade, Aging and Spatial-Dependent Variation of Elastoplastic and Viscoelastic Characteristics in a Dental, Submicron Hybrid CAD/CAM Composite. Materials, 16(16), 5654. https://doi.org/10.3390/ma16165654