Medical Waste Incineration Fly Ash as a Mineral Filler in Dense Bituminous Course in Flexible Pavements
Abstract
:1. Introduction
2. Methods and Materials
2.1. Test Scheme
2.2. Bitumen
2.3. Aggregates
2.4. Preparation of MWIFA and SD Fillers
2.5. Properties of Mineral Fillers
2.6. Marshall Mix Design
2.7. Immersion Test
2.8. Determination of Optimum Filler Percentage
2.9. Leaching Test
3. Results and Discussion
3.1. Unit Weight
3.2. Stability
3.3. Flow
3.4. Air Voids
3.5. Voids in Mineral Aggregate (VMA)
3.6. Voids Filled with Asphalt (VFA)
3.7. Marshall Properties at Optimum Bitumen Content (OBC)
3.8. Marshall Immersion
3.9. Optimum Filler Content
3.10. Heavy Metal Leaching
4. Conclusions
4.1. Mechanical and Sustainable Performance
4.2. Practical Implications on the Utilization of MWIFA
4.3. Limitations and the Scope for the Future Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syed, E.H.; Mutahara, M.; Rahman, M. Medical Waste Management (MWM) in Dhaka, Bangladesh. Home Health Care Manag. Pract. 2012, 24, 140–145. [Google Scholar] [CrossRef]
- Ministry of Health and Family Welfare, Environmental Assessment and Action Plan for the Health, Population and Nutrition Sector Development Program (HPNSDP), 2011–2016; Environment Management Plan; Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2011.
- Azni, I.; Katayon, S.; Ratnasamy, M.; Johari, M.M.N.M. Stabilization and utilization of hospital waste as road and asphalt aggregate. J. Mater. Cycles Waste Manag. 2005, 7, 33–37. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.-S.; Chen, M.; Liu, Z.; Wu, D.B.J. Typical pollutants in bottom ashes from a typical medical waste incinerator. J. Hazard. Mater. 2010, 173, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Kimani, N.G. Environmental Pollution and Impacts on Public Health: Implications of the Dandora Municipal Dumping Site in Nairobi, Kenya; Nairobi United Nations Environment Program: Nairobi, Kenya, 2007. [Google Scholar]
- Agamuthu, P.; Chitra, S. Solidification/stabilization disposal of medical waste incinerator fly ash using cement. Malays. J. Sci. 2009, 28, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Tzanakos, K.; Mimilidou, A.; Anastasiadou, K.; Stratakis, A.; Gidarakos, E. Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Manag. 2014, 34, 1823–1828. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H.-Q.; Wei, G.-X.; Zhang, R.; Zeng, T.-T.; Liu, G.-S.; Zhou, J.-H. Characteristics and Treatment Methods of Medical Waste Incinerator Fly Ash: A Review. Processes 2018, 6, 173. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.; Srivastava, V.; Singh, A.K. Suitability of biomedical waste ash in concrete. Int. J. Eng. Tech. Res. 2016, 5, 2454–4698. [Google Scholar]
- Al-Mutairi, N.; Terro, M.; Al-Khaleefi, A.-L. Effect of recycling hospital ash on the compressive properties of concrete: Statistical assessment and predicting model. Build. Environ. 2004, 39, 557–566. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Saltan, M.; Öksüz, B.; Uz, V.E. Use of glass waste as mineral filler in hot mix asphalt. Sci. Eng. Compos. Mater. 2015, 22, 271–277. [Google Scholar] [CrossRef]
- Kandhal, P.S. Waste Materials in Hot Mix Asphalt—An Overview; National Center for Asphalt Technology: Auburn, AL, USA, 1992. [Google Scholar]
- Amir, M.; Morteza, R. Application of coal waste powder as filler in hot mix asphalt. Constr. Build. Mater. 2014, 66, 476–483. [Google Scholar] [CrossRef]
- Alnealy, D.S.K.T.; Sutradhar, D.; Miah, M.; Chowdhury, G.J.; Sobhan, M.A. Effect of Using Waste Material as Filler in Bituminous Mix Design. Am. J. Civ. Eng. 2015, 3, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Bhageerathy, K.P.; Alex, A.P.; Manju, V.S.; Raji, A.K. Use of biomedical plastic waste in bituminous road construction. Int. J. Eng. Adv. Technol. 2014, 3, 89–92. [Google Scholar]
- Raji, A.K.; Babu, K.K.; Sreekala, G. Utilisation of medical plastic wastes in bituminous pavement. In Proceedings of the XXI Kerala Science Congress, Kollam, India, 19–21 August 2009; pp. 325–327. [Google Scholar]
- Tapkın, S. Mechanical evaluation of asphalt–aggregate mixtures prepared with fly ash as a filler replacement. Can. J. Civ. Eng. 2008, 35, 27–40. [Google Scholar] [CrossRef]
- Warden, W.B.; Hudson, S.B.; Howell, H.C. Evaluation of mineral fillers in terms of practical pavement performance. Proc. Assoc. Asph. Paving Technol. 1952, 27, 101–110. [Google Scholar]
- Sankaran, K.S. The influence of the quality of filler in asphaltic paving mixtures. J. Indian Roads Congr. 1973, 35, 141–151. [Google Scholar]
- Henning, N.E. Evaluation of Lignite Fly Ash as a Mineral Filler in Asphaltic Concrete; Twin City Testing and Engineering Laboratory, Inc.: St. Paul, MN, USA, 1974. [Google Scholar]
- Mistry, R.; Roy, T.K. Effect of using fly ash as alternative filler in hot mix asphalt. Perspect. Sci. 2016, 8, 307–309. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.A.; Bahia, H.U.; Dongre, R. Rheological Properties of Mineral Filler-Asphalt Mastics and Its Importance to Pavement Performance; ASTM International: West Conshohocken, PA, USA, 1992. [Google Scholar]
- Zulkati, A.; Diew, W.Y.; Delai, D.S. Effects of Fillers on Properties of Asphalt-Concrete Mixture. J. Transp. Eng. 2012, 138, 902–910. [Google Scholar] [CrossRef]
- Anderson, D.A.; Le Hir, Y.M.; Marasteanu, M.O.; Planche, J.-P.; Martin, D.; Gauthier, G. Evaluation of Fatigue Criteria for Asphalt Binders. Transp. Res. Rec. J. Transp. Res. Board 2001, 1766, 48–56. [Google Scholar] [CrossRef]
- Wang, H.; Al-Qadi, I.L.; Faheem, A.F.; Bahia, H.U.; Yang, S.-H.; Reinke, G.H. Effect of Mineral Filler Characteristics on Asphalt Mastic and Mixture Rutting Potential. Transp. Res. Rec. J. Transp. Res. Board 2011, 2208, 33–39. [Google Scholar] [CrossRef]
- Diab, A.; Enieb, M. Investigating influence of mineral filler at asphalt mixture and mastic scales. Int. J. Pavement Res. Technol. 2018, 11, 213–224. [Google Scholar] [CrossRef]
- Rajitha, K.R.; Koramutla, T. Effect of Fillers on Bituminous Paving Mixes. Int. J. Eng. Res. Technol. 2019, 8, 2391–2397. [Google Scholar] [CrossRef]
- Mishra, B.; Gupta, M.K. Use of fly ash plastic waste composite in bituminous concrete mixes of flexible pavement. Am. J. Eng. Res. 2017, 6, 253–262. [Google Scholar]
- Joshi, A.R.; Patel, S. Investigation into Sustainable Application of Class C Fly Ash Layer in Flexible Pavement. J. Hazard. Toxic Radioact. Waste 2023, 27, 04022033. [Google Scholar] [CrossRef]
- Mirković, K.; Tošić, N.; Mladenović, G. Effect of Different Types of Fly Ash on Properties of Asphalt Mixtures. Adv. Civ. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Al Nageim, H.; Dulaimi, A.; Al-Busaltan, S.; Kadhim, M.A.; Al-Khuzaie, A.; Seton, L.; Croft, J.; Drake, J. The development of an eco-friendly cold mix asphalt using wastewater sludge ash. J. Environ. Manag. 2023, 329, 117015. [Google Scholar] [CrossRef]
- Suryani, F.M.; Yusuf, I.; Aida, H.; Farhan, A. Coal Ash Utilization as a Filler in Flexible Pavement Construction. In International Conference on Experimental and Computational Mechanics in Engineering; Springer: Singapore, 2023; pp. 215–223. [Google Scholar]
- Joumblat, R.A.; Masri, Z.A.B.A.; Absi, J.; ElKordi, A. Investigation of using municipal solid waste incineration fly ash as alternative aggregates replacement in hot mix asphalt. Road Mater. Pavement Des. 2022, 24, 1290–1309. [Google Scholar] [CrossRef]
- Dahim, M.; Abuaddous, M.; Al-Mattarneh, H.; Rawashdeh, A.; Ismail, R. Enhancement of road pavement material using conventional and nano-crude oil fly ash. Appl. Nanosci. 2021, 11, 2517–2524. [Google Scholar] [CrossRef]
- Sobolev, K.; Vivian, I.F.; Saha, R.; Wasiuddin, N.M.W.; Saltibus, N.E. The effect of fly ash on the rheological properties of bituminous materials. Fuel 2014, 116, 471–477. [Google Scholar] [CrossRef]
- Al-Hdabi, A. Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler. Constr. Build. Mater. 2016, 126, 544–551. [Google Scholar] [CrossRef]
- Radwan, A.A.M.; Satar, M.K.I.M.; Hassan, N.A.; Rogo, K.U. The Influence of Coal Fly Ash on the Mechanical Properties of Hot Mix Asphalt Mixture. IOP Conf. Ser. Earth Environ. Sci. 2022, 971, 012012. [Google Scholar] [CrossRef]
- Zhao, X.; Ge, D.; Wang, J.; Wu, D.; Liu, J. The Performance Evaluation of Asphalt Mortar and Asphalt Mixture Containing Municipal Solid Waste Incineration Fly Ash. Materials 2022, 15, 1387. [Google Scholar] [CrossRef]
- Joumblat, R.; Masri, Z.A.B.A.; Elkordi, A. Dynamic Modulus and Phase Angle of Asphalt Concrete Mixtures Containing Municipal Solid Waste Incinerated Fly Ash as Mineral Filler Substitution. Int. J. Pavement Res. Technol. 2022, 1–21. [Google Scholar] [CrossRef]
- Joumblat, R.; Elkordi, A.; Khatib, J.; Masri, Z.A.B.A.; Absi, J. Characterisation of asphalt concrete mixes with municipal solid waste incineration fly ash used as fine aggregates substitution. Int. J. Pavement Eng. 2022, 1–12. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, A.; Zhang, J.; Tang, Y.; Shi, P.; Tang, Q.; Huang, Y. Physical and Chemical Properties, Pretreatment, and Recycling of Municipal Solid Waste Incineration Fly Ash and Bottom Ash for Highway Engineering: A Literature Review. Adv. Civ. Eng. 2020, 2020, 1–17. [Google Scholar]
- Yan, K.; Li, L.; Zheng, K.; Ge, D. Research on properties of bitumen mortar containing municipal solid waste incineration fly ash. Constr. Build. Mater. 2019, 218, 657–666. [Google Scholar] [CrossRef]
- Jaber, S.K.; Aljawad, A.A.; Pop, E.; Prisecaru, T.; Pisa, I. The use of bottom ash and fly ash from medical incinerators as road construction material. Sci. Bull. Univ. Politeh. Buchar. 2022, 84, 2. [Google Scholar]
- ASTM-D3515-01; Standard Specification for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures. ASTM International: West Conshohocken, PA, USA, 2001.
- Tang, Q.; Liu, Y.; Gu, F.; Zhou, T. Solidification/Stabilization of Fly Ash from a Municipal Solid Waste Incineration Facility Using Portland Cement. Adv. Mater. Sci. Eng. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- ASTM D242; Standard Specification for Mineral Filler For Bituminous Paving Mixtures. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- Chen, Y.; Xu, S.; Tebaldi, G.; Romeo, E. Role of mineral filler in asphalt mixture. Road Mater. Pavement Des. 2020, 23, 247–286. [Google Scholar] [CrossRef]
- ASTM C188-16; Standard Test Method for Density of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D854-02; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D6926-20; Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D1559; Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. ASTM International: West Conshohocken, PA, USA, 1989.
- ASTM D6927-15; Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM International: West Conshohocken, PA, USA, 2015.
- Akbulut, H.; Gürer, C.; Çetin, S.; Elmacı, A. Investigation of using granite sludge as filler in bituminous hot mixtures. Constr. Build. Mater. 2012, 36, 430–436. [Google Scholar] [CrossRef]
- Mehari, Z.B. Effect of Different Types of Filler Materials on Characteristics of Hot-Mix-Asphalt Concrete; Addis Ababa University: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- USEPA 1311; Toxicity Characteristic Leaching Procedure. United States Environmental Protection Agency: Washington, DC, USA, 1992.
- NEN 7345; Leaching Characteristics of Solid Earthy and Stony Building and Waste Materials—Leaching Tests—Determination of the Leaching of Inorganic Components from Buildings and Monolitic Waste Materials with the Diffusion Test. Nederlands Normalisatie Instituut: Delft, The Netherlands, 1995.
- Malviya, R.; Chaudhary, R. Evaluation of leaching characteristics and environmental compatibility of solidified/stabilized industrial waste. J. Mater. Cycles Waste Manag. 2006, 8, 78–87. [Google Scholar] [CrossRef]
- Juel, A.I.; Mizan, A.; Ahmed, T. Sustainable use of tannery sludge in brick manufacturing in Bangladesh. Waste Manag. 2017, 60, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kar, D.; Panda, M.; Giri, J.P. Influence of fly ash as a filler in bituminous mixes. ARPN J. Eng. Appl. Sci. 2014, 9, 895–900. [Google Scholar]
- Rahman, A.; Ali, S.A.; Adhikary, S.K.; Hossain, Q.S. Effect of fillers on bituminous paving mixes: An experimental study. J. Eng. Sci. 2012, 3, 121–127. [Google Scholar]
- Mazumdar, M.; Rao, S.K. Effect of fly ash on engineering properties of sand-asphalt-sulfur paving mixes. Transp. Res. Rec. 1993, 1993, 144. [Google Scholar]
- Jony, H.H.; Al-Rubaie, M.; Jahad, I. The effect of using glass powder filler on hot asphalt concrete mixtures properties. Eng. Technol. J. 2011, 29, 44–57. [Google Scholar]
- Sojobi, A.O.; Nwobodo, S.E.; Aladegboye, O.J. Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Eng. 2016, 3, 1133480. [Google Scholar] [CrossRef] [Green Version]
- Uzun, I.; Terzi, S. Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Constr. Build. Mater. 2012, 31, 284–288. [Google Scholar] [CrossRef]
- Asphalt Institute. MS-2 Asphalt Mix Design Methods, 7th ed.; Asphalt Institute: Lexington, KY, USA, 2014. [Google Scholar]
- Nayak, S.P. Characterization of bituminous concrete using flyash as filler. Gedrag Organ. Rev. 2020, 33, 1326–1333. [Google Scholar] [CrossRef]
- Akter, R.; Hossain, M.K. Influence of rice husk ash and slag as fillers in asphalt concrete mixes. Am. J. Eng. Res. 2018, 6, 303–311. [Google Scholar]
- Chadbourn, B.A.; Skok, E.L., Jr.; Newcomb, D.E.; Crow, B.L.; Spindle, S. The Effect of Voids in Mineral Aggregate (VMA) on Hot-Mix Asphalt Pavements; Minnesota Department of Transportation: Saint Paul, MN, USA, 1999. [Google Scholar]
- Sargın, Ş.; Saltan, M.; Morova, N.; Serin, S.; Terzi, S. Evaluation of rice husk ash as filler in hot mix asphalt concrete. Constr. Build. Mater. 2013, 48, 390–397. [Google Scholar] [CrossRef]
- Carpenter, C.A. A Cooperative Study of Fillers in Asphaltic Concrete; Federal Highway Administration: Washington, DC, USA, 1952.
- Choudhary, J.; Kumar, B.; Gupta, A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Constr. Build. Mater. 2020, 234, 117271. [Google Scholar] [CrossRef]
- Kuity, A.; Jayaprakasan, S.; Das, A. Laboratory investigation on volume proportioning scheme of mineral fillers in asphalt mixture. Constr. Build. Mater. 2014, 68, 637–643. [Google Scholar] [CrossRef]
- Sai, G.M.; Datta, Y.S.; Lakshmayya, M.T.S. Effect of using pond ash as filler in bituminous mix. Int. J. Res. Anal. Rev. 2019, 6, 1492–1495. [Google Scholar]
- Sharma, V.; Chandra, S.; Choudhary, R. Characterization of Fly Ash Bituminous Concrete Mixes. J. Mater. Civ. Eng. 2010, 22, 1209–1216. [Google Scholar] [CrossRef]
- Juel, M.A.I.; Chowdhury, Z.U.M.; Ahmed, T. Heavy metal speciation and toxicity characteristics of tannery sludge. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; p. 060009. [Google Scholar] [CrossRef]
Properties | Test Designation | Sample Values | Standard Specifications |
---|---|---|---|
Bitumen | |||
Penetration at 25 °C (0.1 mm) | AASHTO T49 | 61 | 60–70 a |
Flash Point (°C) | AASHTO T48 | 295 | min 232 a |
Ductility at 25 °C (cm) | AASHTO T51 | 100+ | min 100 a |
Solubility in Trichloroethylene (%) | AASHTO T44 | 97.8 | min 99.0 a |
Loss on Heating (%) | AASHTO T179 | 0.06 | <0.8 a |
Softening Point (°C) | AASHTO T53 | 49 | 48–56 a |
Aggregate | |||
Aggregate Impact Value (%) | BS 812-3 | 28 | <30 b |
Aggregate Crushing Value (%) | BS 812-3 | 17 | <30 c |
Ten Percent Fine Value (KN) | BS 812-111 | 130 | min 100 b |
Flakiness Index (%) | BS 812-105.1 | 26 | <30 b |
Elongation Index (%) | BS 812-105.2 | 29 | <30 b |
Angularity Number | BS 812-1 | 11 | 0–12 b |
Los Angeles Abrasion (%) | AASHTO T96 | 31 | <35 c |
Specific Gravity (CA) | AASHTO T85 | 2.72 | - |
Specific Gravity (FA) | AASHTO T84 | 2.6 | - |
Chemical Components | MWIFA | SD |
---|---|---|
CaO | 62.39 | 25.53 |
SiO2 | 8.92 | 51.71 |
SO3 | 5.92 | 0.61 |
Na2O | 5.35 | 0.10 |
TiO2 | 3.73 | 0.79 |
Al2O3 | 3.73 | 6.17 |
MgO | 2.65 | 5.50 |
ZnO | 2.13 | - |
Fe2O3 | 1.75 | 6.11 |
P2O5 | 1.38 | 0.19 |
K2O | 1.19 | 2.16 |
NiO | 0.50 | - |
Cr2O3 | 0.21 | 0.07 |
MnO | 0.07 | 0.10 |
CuO | 0.04 | - |
Br | 0.03 | - |
ZrO2 | - | 0.01 |
SrO | - | 0.05 |
Design Criteria | OBC (%) | %Va | %VMA | %VFA | Stability (kN) | Flow (mm) | Stability Loss (%) |
---|---|---|---|---|---|---|---|
0% Filler | 5.22 | 4 | 14.55 | 72.66 | 21.16 | 3.22 | 32.91% |
2% MWIFA Filler | 4.85 | 4 | 13.86 | 71.49 | 21.06 | 4.00 | 7.59% |
4% MWIFA Filler | 4.84 | 4 | 13.54 | 70.45 | 22.99 | 3.92 | 35.12% |
6% MWIFA Filler | 5.3 | 4 | 14.53 | 72.52 | 17.98 | 3.96 | 24.9% |
8% MWIFA Filler | 5.99 | 4 | 16.55 | 75.83 | 15.88 | 3.98 | 0.70% |
10% MWIFA Filler | 6.25 | 4 | 16.70 | 75.48 | 22.69 | 3.69 | 23.56% |
2% SD Filler | 4.51 | 4 | 13.24 | 69.80 | 25.06 | 4.24 | 31.35% |
4% SD Filler | 4.3 | 4 | 13.10 | 69.55 | 21.18 | 3.51 | 30.86% |
6% SD Filler | 4.7 | 4 | 13.77 | 71.95 | 18.37 | 4.00 | 21.86% |
8% SD Filler | 4.12 | 4 | 13.02 | 69.37 | 17.79 | 3.83 | 29.18% |
10% SD Filler | 4.37 | 4 | 13.42 | 70.47 | 25.27 | 3.53 | 12.52% |
Standard limit a b | 4.90–6.5 a | 3–5 b | min 13 b | 65–78 b | min 5.338 b | 2–4 b | - |
Heavy Metals | As | Pb | Cu | Cr | Cd | Zn | Ni | Hg | |
---|---|---|---|---|---|---|---|---|---|
Raw MWIFA | 0.0298 | 0.169 | 0.003 | 0.054 | 0.106 | 0.011 | 0.003 | ND a | |
MWIFA as filler in Marshall Samples | 2% filler | 0.0187 | 0.16 | 0.059 | 0.003 | 0.089 | 0 | 0.377 | ND |
Heavy Metal Reduction (%) | 37.3 | 5.3 | - | 94.4 | 16.0 | 100 | - | - | |
4% filler | 0.0254 | 0.072 | 0.025 | 0.067 | 0.042 | 0.001 | 0.087 | ND | |
Heavy Metal Reduction (%) | 14.8 | 57.4 | - | - | 60.4 | 90.9 | - | - | |
6% filler | 0.0256 | 0.08 | 0.019 | 0.027 | 0.032 | 0.002 | 0.076 | ND | |
Heavy Metal Reduction (%) | 14.1 | 52.7 | - | 50 | 69.8 | 81.8 | - | - | |
8% filler | 0.0688 | 0 | 0.01 | 0.009 | 0.085 | 0 | 0.045 | ND | |
Heavy Metal Reduction (%) | - | 100 | - | 83.3 | 19.8 | 100 | - | - | |
10% filler | 0.0251 | 0.125 | 0.012 | 0.07 | 0.048 | 0.002 | 0.15 | ND | |
Heavy Metal Reduction (%) | 15.8 | 26.0 | - | - | 54.7 | 81.8 | - | - | |
EPA Land Disposal Restriction for Hazardous Waste b | Universal Treatment Standards limit | 5 | 0.75 | - | 0.6 | 0.11 | 4.3 | 11 | 0.2 |
Toxicity Characteristic Regulatory Limit | 5 | 5 | - | 5 | 1 | - | - | 0.2 |
Heavy Metals | Cd | Ni | Zn | Cu | Pb |
---|---|---|---|---|---|
Unit | mg/m2 | mg/m2 | mg/m2 | mg/m2 | mg/m2 |
2% MWIFA | 0.00018 | 0.00028 | 0.00002 | 0.00005 | 0.00034 |
4% MWIFA | 0.00034 | 0.00022 | 0.00002 | 0.00005 | 0.00018 |
6% MWIFA | 0.00022 | 0.00028 | 0.00001 | 0.00008 | 0.00040 |
8% MWIFA | 0.00035 | 0.00027 | 0.00003 | 0.00015 | 0.00022 |
10% MWIFA | 0.00022 | 0.00033 | 0.00002 | 0.00006 | 0.00041 |
Leaching limits as per NEN 7345 [58] | |||||
U1 | 1 | 50 | 200 | 50 | 100 |
U2 | 7 | 350 | 1500 | 350 | 800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, R.; Al Biruni, M.T.; Afia, A.; Hasan, M.; Islam, M.R.; Ahmed, T. Medical Waste Incineration Fly Ash as a Mineral Filler in Dense Bituminous Course in Flexible Pavements. Materials 2023, 16, 5612. https://doi.org/10.3390/ma16165612
Chowdhury R, Al Biruni MT, Afia A, Hasan M, Islam MR, Ahmed T. Medical Waste Incineration Fly Ash as a Mineral Filler in Dense Bituminous Course in Flexible Pavements. Materials. 2023; 16(16):5612. https://doi.org/10.3390/ma16165612
Chicago/Turabian StyleChowdhury, Rumpa, Mir Tanvir Al Biruni, Antara Afia, Mehedi Hasan, Mohammed Russedul Islam, and Tanvir Ahmed. 2023. "Medical Waste Incineration Fly Ash as a Mineral Filler in Dense Bituminous Course in Flexible Pavements" Materials 16, no. 16: 5612. https://doi.org/10.3390/ma16165612
APA StyleChowdhury, R., Al Biruni, M. T., Afia, A., Hasan, M., Islam, M. R., & Ahmed, T. (2023). Medical Waste Incineration Fly Ash as a Mineral Filler in Dense Bituminous Course in Flexible Pavements. Materials, 16(16), 5612. https://doi.org/10.3390/ma16165612