Effect of Portland Cement on the Selected Properties of Flue Gas Desulfurization Gypsum-Based Plasters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Gypsum–Cement Mortar Samples
2.2.2. Analytical Methods
Mechanical Strength
Dimension Changes
XRD Analysis
Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
3. Results and Discussion
3.1. Mechanical Strength
3.2. Dimension Changes
3.3. X-ray Diffractometry
3.4. Scanning Electron Microscopy and Energy-Dispersive Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Główny Urząd Statystyczny. Available online: https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/przemysl/produkcja-wazniejszych-wyrobow-przemyslowych-w-marcu-2022-roku,2,120.html (accessed on 10 March 2023).
- Galos, K.; Lewicka, E. Gips i anhydryt. In Gospodarka Surowcami Mineralnymi w Polsce w Latach 2011–2020; IGSMiE PAN: Cracow, Poland, 2021; pp. 99–103. [Google Scholar]
- Czapowski, G. Gips i Anhydryt. In Bilans Zasobów Złóż Kopalin w Polsce wg Stanu na 31 XII 2021 r.; Szuflicki, M., Malon, A., Tymiński, M., Eds.; PIG-PIB: Warsaw, Poland, 2022; pp. 96–98. [Google Scholar]
- Szlugaj, J.; Naworyta, W. Analysis of the Changes in Polish Gypsum Resources in the Context of Flue Gas Desulfurization in Conventional Power Plant. Gospod. Surowcami Miner. 2015, 31, 93–108. [Google Scholar] [CrossRef]
- Mikoś, J. Budowlany gips syntetyczny z odsiarczania spalin. In Proceedings of the Konferencja Naukowo-Techniczna Procesy Budowlane, Gliwice-Kokotek, Poland, 29 September–October 2000; pp. 147–152. [Google Scholar]
- Wons, T.; Niziurska, M. Analiza Jakości Gipsów Syntetycznych z Krajowych Instalacji Odsiarczania Spalin Metodą Mokrą Wapienną Stosowanych Jako Substytut Gipsu Naturalnego Do Produkcji Wyrobów Budowlanych; Pr. Inst. Ceram. I Mater. Bud.: Cracow, Poland, 2013.
- EN 13279-1:2008; Gypsum Binders and Gypsum Plasters—Part 1: Definitions and Requirements. European Committee for Standarization (CEN): Brussels, Belgium, 2008.
- Ministry of Climate and Environment. Available online: http://www.gov.pl/web/klimat/krajowy-plan-na-rzecz-energii-i-klimatu (accessed on 10 March 2023).
- Bielecka, A.; Kulczycka, J. Coal Combustion Products Management toward a Circular Economy—A Case Study of the Coal Power Plant Sector in Poland. Energies 2020, 13, 3603. [Google Scholar] [CrossRef]
- Haba, S.; Nocuń-Wczelik, W. The future of Polish desulphogypsum from flue gas desulphurization using the wet lime method in the light of the national climate and energy policy—A review. Ceram. Mater. 2021, 73, 3–13. [Google Scholar]
- Wołżeński, A.W.; Stambułko, W.I.; Ferrońskaja, A.W. Spoiwa, Betony i Wyroby Gipsowo-Cementowo-Pucolanowe; Arkady: Warsaw, Poland, 1977. [Google Scholar]
- Butakova, M.D.; Gorbunov, S.P. Study of the influence of complex additives on properties of the gypsum-cement-puzzolan binder and concretes on its basis. Procedia Eng. 2016, 150, 1461–1467. [Google Scholar] [CrossRef]
- Kovler, K. Setting and Hardening of Gypsum-Portland Cement-Silica Fume Blends, Part 1: Temperature and Setting Expansion. Cem. Concr. Res. 1998, 28, 423–437. [Google Scholar] [CrossRef]
- Gou, H.; Wang, Q.; Zhang, G.; Li, W.; Meng, E.; Chen, W.; Hui, S.; Zhou, L. Water Resistance of Flue Gas Desulfurization Building Gypsum Modified by Ordinary Portland Cement. Bull. Chin. Ceram. Soc. 2021, 40, 2288–2295. [Google Scholar]
- Camarini, G.; De Milito, J.A. Gypsum hemihydrate-cement blends to improve rendering durability. Constr. Build. Mater. 2011, 25, 4121–4125. [Google Scholar] [CrossRef]
- Kovler, K. Role of ettringite, thaumasite and monocarbonate in hardening and destruction of Portland cement-gypsum system. In ConcreteLife’06—International RILEM-JCI Seminar on Concrete Durability and Service Life Planning: Curing, Crack Control, Performance in Harsh Environments; Kovler, A., Ed.; RILEM Publications SARL: Bagneaux, France, 2006; pp. 70–80. [Google Scholar]
- Klin, S. Wpływ obecności i migracji wody na właściwości stwardniałego wyrobu gipsowego. In Zeszyty Naukowe Akademii Rolniczej we Wrocławiu Nr 510 Rozprawy CCXXVII.; Wydawnictwo Akademii Rolniczej: Wrocław, Poland, 2005; pp. 248–272. [Google Scholar]
- Wu, G.; Ma, H.; Chen, Q.; Huang, Z.; Zhang, C.; Yang, T. Preparation of waterproof block by silicate clinker modified FGD gypsum. Constr. Build. Mater. 2019, 214, 318–325. [Google Scholar] [CrossRef]
- Kurdowski, W.; Garbacik, A.; Chłądzyński, S. Problem za dużej zawartości gipsu w cemencie. Cem. Wapno Beton 2004, 71, 81–86. [Google Scholar]
- Tesch, V.; Middendorf, B. Occurrence of thaumasite in gypsum lime mortars for restoration. Cem. Concr. Res. 2006, 36, 1516–1522. [Google Scholar] [CrossRef]
- Crammond, N. The occurrence of thaumasite in modern construction—A review. Cem. Concr. Compos. 2002, 24, 393–402. [Google Scholar] [CrossRef]
- Macphee, D.E.; Diamond, S. Guest Editorial—Thaumasite in Cementitious Materials. Cem. Concr. Compos. 2003, 25, 805–807. [Google Scholar] [CrossRef]
- Kurdowski, W. Chemia Cementu i Betonu; Stowarzyszenie Producentów Cementu: Cracow, Poland, 2010. [Google Scholar]
- Gawlicki, M.; Mróz, R. Korozja starych betonów i zapraw. In Proceedings of the Konferencja Dni Betonu—Tradycja I Nowoczesność, Wisła, Poland, 11–13 October 2021. [Google Scholar]
- Bensted, J. Thaumasite—direct, woodfordite and other possible formation routes. Cem. Concr. Compos. 2003, 25, 873–877. [Google Scholar] [CrossRef]
- Barnett, S.J.; Adam, C.D.; Jackson, A.R.W. Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12∙26H2O, and thaumasite, Ca3SiSO4CO3(OH)6∙12H2O. J. Mater. Sci. 2000, 35, 4109–4114. [Google Scholar] [CrossRef]
- Barnett, S.J.; Macphee, D.E.; Crammond, N.J. Solid solutions between thaumasite and ettringite and their role in sulfate attack. Concr. Sci. Eng. 2001, 3, 209–215. [Google Scholar]
- Dąbrowska, M. Wpływ Popiołu Lotnego Wapiennego na Odporność Korozyjną Kompozytów Wykonanych z Cementu Portlandzkiego Wieloskładnikowego. Ph.D. Thesis, Wydział Budownictwa, Politechnika Śląska, Gliwice, Poland, 2014. [Google Scholar]
- Ping, X.; Beaudoin, J.J. Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure. Cem. Concr. Res. 1992, 22, 631–640. [Google Scholar] [CrossRef]
- Min, D.; Mingshu, T. Formation and expansion of ettringite crystals. Cem. Concr. Res. 1994, 24, 119–126. [Google Scholar] [CrossRef]
- Scherer, G.W. Crystallization in pores. Cem. Concr. Res. 1999, 29, 1347–1358. [Google Scholar] [CrossRef]
- Kunther, W.; Lothenbach, B.; Scrivener, K.L. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cem. Concr. Res. 2013, 46, 23–29. [Google Scholar] [CrossRef]
- Bensted, J.; Munn, J. Thaumasyt—nieporozumienia towarzyszące tej fazie. Cem. Wapno Beton 2013, 5, 301–309. [Google Scholar]
- Bensted, J. Korozja siarczanowa betonu z utworzeniem thaumazytu—stan wiedzy. In Proceedings of the Konferencja Dni Betonu—Tradycja i Nowoczesność, Wisła, Poland, 9–11 October 2006. [Google Scholar]
- Rahman, M.M.; Bassuoni, M.T. Thaumasite sulfate attack on concrete: Mechanisms influential factors and mitigations. Constr. Build. Mater. 2014, 73, 652–662. [Google Scholar] [CrossRef]
- Shi, C.; Wang, D.; Behnood, A. Review of Thaumasite Sulfate Attack on Cement Mortar and Concrete. J. Mater. Civ. Eng. 2012, 24, 1450–1460. [Google Scholar] [CrossRef]
- Daeizadeh, J.M.; Ebrahimi, K.; Mirvalad, S. Field occurrence of thaumasite sulfate attack: Prevention perspective. Asian J. Civ. Eng. 2020, 21, 1183–1192. [Google Scholar] [CrossRef]
- Mróz, R.; Gawlicki, M. Rola siarczanów i węglanów w korozji betonów w niskich temperaturach. In Proceedings of the Konferencja Dni Betonu—Tradycja i Nowoczesność, Wisła, Poland, 13–15 October 2008. [Google Scholar]
- Bentur, A.; Kovler, K.; Goldman, A. Gypsum of improved performance using blends with Portland Cement and silica fume. Adv. Cem. Res. 1994, 6, 109–116. [Google Scholar] [CrossRef]
- Kovler, K. Enhancing Water Resistance of Cement and Gypsum-Cement Materials. J. Mater. Civ. Eng. 2001, 13, 349–355. [Google Scholar] [CrossRef]
- Kovler, K. Strength and water absorption for gypsum-cement-silica fume blends of improved performance. Adv. Cem. Res. 1998, 10, 81–92. [Google Scholar] [CrossRef]
- Potapova, E.; Nyein, A.K.; Tsvetkova, E.; Fischer, H.B. Modification of the structure of gypsum-cement-pozzolanic binder. In Proceedings of the International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020), Sevastopol, Russia, 7–11 September 2020. [Google Scholar]
- Çolak, A. Physical, mechanical and durability properties of gypsum-Portland cement-natural pozzolan blends. Can. J. Civ. Eng. 2001, 28, 375–382. [Google Scholar]
- Singh, M.; Garg, M. Relationship between mechanical properties and porosity of water resistant gypsum binder. Cem. Concr. Res. 1996, 26, 449–456. [Google Scholar] [CrossRef]
- Wansom, S.; Chintasongkro, P.; Srijampan, W. Water resistant blended cements containing flue-gas-desulfurization gypsum, Portland cement and flu ash for structural applications. Cem. Concr. Compos. 2019, 103, 134–148. [Google Scholar] [CrossRef]
- EN 13279-2:2014; Gypsum Binders and Gypsum Plasters—Part 2: Test Methods. European Committee for Standarization (CEN): Brussels, Belgium, 2014.
- PN-B-04500:1985; Zaprawy budowlane. Badanie cech fizycznych i wytrzymałościowych. Polski Komitet Normalizacji, Miar i Jakości: Warsaw, Poland, 1985.
- Bobrowski, A.; Gawlicki, M.; Łagosz, A.; Nocuń-Wczelik, W. Cement. Metody Badań. Wybrane Kierunki Stosowania; Wydawnictwo AGH: Cracow, Poland, 2010. [Google Scholar]
- The International Center of Diffraction Data. Available online: www.icdd.com (accessed on 10 May 2022).
- Mróz, R. Rola glinianów i glinożelazianów wapnia w kształtowaniu trwałości spoiw cementowych w warunkach korozji siarczanowo-węglanowej. Prz. Bud. 2014, 5, 49–51. [Google Scholar]
- Barnett, S.J.; Macphee, D.E.; Lachowski, E.E.; Crammond, N.J. XRD, EDS and IR analysis of solid solutions between thaumasite and ettringite. Cem. Concr. Res. 2002, 32, 719–730. [Google Scholar] [CrossRef]
- Bellmann, F.; Stark, J. The role of calcium hydroxide in the formation of thaumasite. Cem. Concr. Res. 2008, 38, 1154–1161. [Google Scholar] [CrossRef]
- Doleželová, M.; Krejsová, I.; Scheinherrová, L.; Keppert, M.; Vimmrová, A. Investigation on the environmentally friendly gypsum based composites with improved water resistance. J. Clean. Prod. 2022, 370, 133278. [Google Scholar] [CrossRef]
Components | Type of Plaster | |||
---|---|---|---|---|
30G/6C | 30G/8C | 30G/10C | 30G/12C | |
% | ||||
Gypsum | 30.00 | 30.00 | 30.00 | 30.00 |
CEM I 42,5R | 6.00 | 8.00 | 10.00 | 12.00 |
Quartz sand (0.1–0.5 mm) | 48.59 | 46.59 | 44.59 | 42.59 |
Limestone powder (0.0–0.2 mm) | 10.00 | 10.00 | 10.00 | 10.00 |
Hydrated lime | 2.00 | 2.00 | 2.00 | 2.00 |
Expanded perlite (0.0–2.0 mm) | 3.00 | 3.00 | 3.00 | 3.00 |
Admixtures Modified methyl cellulose Starch ether Sodium lauryl sulfate L (+) tartaric acid | 0.23 0.03 0.02 0.13 | 0.23 0.03 0.02 0.13 | 0.23 0.03 0.02 0.13 | 0.23 0.03 0.02 0.13 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Type of Mortar | Expansion | |
---|---|---|
mm·m−1 | % | |
30G/6C | 1.19 | 0.12 |
30G/8C | 2.54 | 0.25 |
30G/10C | 6.27 | 0.63 |
30G/12C | 6.31 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baran, E.; Hynowski, M.; Kotwica, Ł.; Rogowski, J. Effect of Portland Cement on the Selected Properties of Flue Gas Desulfurization Gypsum-Based Plasters. Materials 2023, 16, 5058. https://doi.org/10.3390/ma16145058
Baran E, Hynowski M, Kotwica Ł, Rogowski J. Effect of Portland Cement on the Selected Properties of Flue Gas Desulfurization Gypsum-Based Plasters. Materials. 2023; 16(14):5058. https://doi.org/10.3390/ma16145058
Chicago/Turabian StyleBaran, Edyta, Mariusz Hynowski, Łukasz Kotwica, and Jacek Rogowski. 2023. "Effect of Portland Cement on the Selected Properties of Flue Gas Desulfurization Gypsum-Based Plasters" Materials 16, no. 14: 5058. https://doi.org/10.3390/ma16145058
APA StyleBaran, E., Hynowski, M., Kotwica, Ł., & Rogowski, J. (2023). Effect of Portland Cement on the Selected Properties of Flue Gas Desulfurization Gypsum-Based Plasters. Materials, 16(14), 5058. https://doi.org/10.3390/ma16145058