Triple-Band and Ultra-Broadband Switchable Terahertz Meta-Material Absorbers Based on the Hybrid Structures of Vanadium Dioxide and Metallic Patterned Resonators
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, Y.S.; Cheon, C.; Son, J.H.; Hahn, S.Y. Fdtd analysis of propagation characteristics of terahertz electromagnetic pulses. IEEE Trans. Magn. 2000, 36, 951–955. [Google Scholar] [CrossRef][Green Version]
- Yang, Z.C.; Wu, Y.K.; Xu, W.; Zhu, H.X.; Zhang, X.Y.; Wang, B.X. Bi-funtional resonance effects of plasmon-induced transparency and fano-like response using an asymmetry metamaterial resonator consisting of three metallic strips at terahertz frequency. Phys. Scr. 2021, 96, 125526. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6g wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.J.; Zhao, J.M. Graphene-enabled active metamaterial for dynamical manipulation of terahertz reflection/transmission/absorption. Phys. Lett. A 2020, 384, 126840. [Google Scholar] [CrossRef]
- Xia, L.P.; Cui, H.L.; Zhang, M.; Dang, S.H.; Du, C.L. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array. Materials 2019, 12, 2255. [Google Scholar] [CrossRef] [PubMed]
- Grebenchukov, A.; Masyukov, M.; Zaitsev, A.; Khodzitsky, M. Asymmetric graphene metamaterial for narrowband terahertz modulation. Opt. Commun. 2020, 476, 126299. [Google Scholar] [CrossRef]
- Nikitkina, A.I.; Bikmulina, P.; Gafarova, E.R.; Kosheleva, N.V.; Efremov, Y.M.; Bezrukov, E.A.; Butnaru, D.V.; Dolganova, I.N.; Chernomyrdin, N.V.; Cherkasova, O.P.; et al. Terahertz radiation and the skin: A review. J. Biomed. Opt. 2021, 26, 043005. [Google Scholar] [CrossRef] [PubMed]
- Hlosta, P.; Nita, M.; Powala, D.; Swiderski, W. Terahertz radiation in non-destructive testing of composite pyrotechnic materials. Compos. Struct. 2022, 279, 114770. [Google Scholar] [CrossRef]
- Sowade, R.; Breunig, I.; Mayorga, I.C.; Kiessling, J.; Tulea, C.; Dierolf, V.; Buse, K. Continuous-wave optical parametric terahertz source. Opt. Express 2009, 17, 22303–22310. [Google Scholar] [CrossRef]
- Sei, N.; Takahashi, T. First demonstration of coherent resonant backward diffraction radiation for a quasi-monochromatic terahertz-light source. Sci. Rep. 2020, 10, 7526. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.P.; Tian, Q.; Yu, W.X.; Tian, H.; Li, L.; Liu, J.L.; Zhou, Z.X. Ultrahigh-q and polarization-independent terahertz metamaterial perfect absorber. Plasmonics 2020, 15, 1943–1947. [Google Scholar] [CrossRef]
- Cattaneo, R.; Borodianskyi, E.A.; Kalenyuk, A.A.; Krasnov, V.M. Superconducting terahertz sources with 12% power efficiency. Phys. Rev. Appl. 2021, 16, L061001. [Google Scholar] [CrossRef]
- Chen, L.; Song, Z. Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 2020, 28, 6565–6571. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Thapa, K.B. Tunable broadband reflector and narrowband filter of a dielectric and magnetized cold plasma photonic crystal. Eur. Phys. J. Plus 2018, 133, 250. [Google Scholar] [CrossRef]
- Kumar, N.; Suthar, B.; Rostami, A. Novel optical behaviors of metamaterial and polymer-based ternary photonic crystal with lossless and lossy features. Opt. Commun. 2023, 529, 129073. [Google Scholar] [CrossRef]
- Goktas, A.; Tumbul, A.; Aslan, F. Grain size-induced structural, magnetic and magnetoresistance properties of nd0.67ca0.33mno3 nanocrystalline thin films. J. Sol-Gel Sci. Technol. 2016, 78, 262–269. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Zou, Y.K.; Lin, H.Y.; Wu, Y.K.; Zhu, H.X.; Zhang, X.Y.; Wang, B.X. Theoretical investigation of an ultra-wideband tunable metamaterial absorber based on four identical vanadium dioxide resonators in the terahertz band. J. Electron. Mater. 2023, 52, 2852–2864. [Google Scholar] [CrossRef]
- Grant, J.; Ma, Y.; Saha, S.; Lok, L.B.; Khalid, A.; Cumming, D.R.S. Polarization insensitive terahertz metamaterial absorber. Opt. Lett. 2011, 36, 1524–1526. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, Q.; Grant, J.; Saha, S.C.; Khalid, A.; Cumming, D.R.S. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 2011, 36, 945–947. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.J.; Zhu, B.; Zhao, J.M.; Jiang, T. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 2014, 22, 22743–22752. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.X.; Yang, Z.Q.; Liang, S.X.; Wang, L.; Zhao, Y.C.; Lan, F.; Shi, Z.J.; Zeng, H.X. Efficient thz on-chip absorption based on destructive interference between complementary meta-atom pairs. IEEE Electron Device Lett. 2019, 40, 1013–1016. [Google Scholar] [CrossRef]
- Zhao, X.G.; Wang, Y.; Schalch, J.; Duan, G.W.; Crernin, K.; Zhang, J.D.; Chen, C.X.; Averitt, R.D.; Zhang, X. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers. ACS Photonics 2019, 6, 830–837. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Yiwen, E.; Zhu, L.P.; Qi, M.; Xu, X.L.; Eai, J.T.; Ren, Z.Y.; Wang, L. Terahertz wave reflection impedance matching properties of graphene layers at oblique incidence. Carbon 2016, 96, 1129–1137. [Google Scholar] [CrossRef]
- Wang, J.F.; Lang, T.T.; Hong, Z.; Xiao, M.Y.; Yu, J. Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials 2021, 11, 1110. [Google Scholar] [CrossRef]
- Zeng, Q.M.; Huang, Y.; Zhong, S.C.; Lin, T.L.; Zhong, Y.J.; Zhang, Z.H.; Yu, Y.J.; Peng, Z.K. Multiple resonances induced terahertz broadband filtering in a bilayer metamaterial. Front. Phys. 2022, 10, 857422. [Google Scholar] [CrossRef]
- Lin, T.L.; Huang, Y.; Zhong, S.C.; Luo, M.T.; Zhong, Y.J.; Yu, Y.J.; Ding, J. Sensing enhancement of electromagnetically induced transparency effect in terahertz metamaterial by substrate etching. Front. Phys. 2021, 9, 664864. [Google Scholar] [CrossRef]
- Xu, S.T.; Fan, F.; Ji, Y.Y.; Chang, S.J. Multi-band terahertz linear polarization converter based on carbon nanotube integrated metamaterial. Opt. Express 2021, 29, 8824–8833. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Rashki, M. Numerical simulations of metamaterial absorbers employing vanadium dioxide. Plasmonics 2022, 17, 1107–1117. [Google Scholar] [CrossRef]
- Qin, Z.; Shi, X.Y.; Yang, F.M.; Hou, E.Z.; Meng, D.J.; Sun, C.F.; Dai, R.; Zhang, S.T.; Liu, H.; Xu, H.Y.; et al. Multi-mode plasmonic resonance broadband lwir metamaterial absorber based on lossy metal ring. Opt. Express 2022, 30, 473–483. [Google Scholar] [CrossRef]
- Lai, S.X.; Xu, W.; Yang, Z.C.; Lu, L.M.; Wang, K.; Feng, S.; Zhang, S.J.; Wu, Y.K.; Wang, B.X. Quad-band terahertz metamaterial absorber using three parallel gold strips surrounded by two identical gold ring arcs. Phys. Scr. 2022, 97, 035501. [Google Scholar] [CrossRef]
- Huang, X.J.; Cao, M.; Wang, D.Q.; Li, X.W.; Fan, J.D.; Li, X.Y. Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene. Opt. Mater. Express 2022, 12, 811–822. [Google Scholar] [CrossRef]
- Zhong, R.B.; Yang, L.; Liang, Z.K.; Wu, Z.H.; Wang, Y.Q.; Ma, A.C.; Fang, Z.; Liu, S.G. Ultrawideband terahertz absorber with a graphene-loaded dielectric hemi-ellipsoid. Opt. Express 2020, 28, 28773–28781. [Google Scholar] [CrossRef]
- Dong, T.L.; Zhang, Y.; Li, Y.; Tang, Y.P.; He, X.J. Dual-function switchable terahertz metamaterial device with dynamic tuning characteristics. Results Phys. 2023, 45, 106246. [Google Scholar] [CrossRef]
- Lou, P.C.; Wang, B.X.; He, Y.H.; Tang, C.; Niu, Q.S.; Pi, F.W. Simplified design of quad-band terahertz absorber based on periodic closed-ring resonator. Plasmonics 2020, 15, 1645–1651. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.N.; Yang, Y.; Li, J.; Ii, J.H.; Zhang, Y.T.; Yao, J.Q. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide. Opt. Express 2020, 28, 7018–7027. [Google Scholar] [CrossRef]
- Yan, D.X.; Meng, M.; Li, J.S.; Li, J.N.; Li, X.J. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave. Opt. Express 2020, 28, 29843–29854. [Google Scholar] [CrossRef]
- Qazilbash, M.M.; Brehm, M.; Andreev, G.O.; Frenzel, A.; Ho, P.C.; Chae, B.G.; Kim, B.J.; Yun, S.J.; Kim, H.T.; Balatsky, A.V.; et al. Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide. Phys. Rev. B 2009, 79, 075107. [Google Scholar] [CrossRef]
- Huang, Y.; He, Q.C.; Zhang, D.P.; Kanamori, Y. Switchable band-pass filter for terahertz waves using VO2-based metamaterial integrated with silicon substrate. Opt. Rev. 2021, 28, 92–98. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wu, P.H.; Zhou, Z.G.; Chen, X.F.; Yi, Z.; Zhu, J.Y.; Zhang, T.S.; Jile, H.G. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide. IEEE Access 2020, 8, 85154–85161. [Google Scholar] [CrossRef]
- Dong, Y.F.; Yu, D.W.; Li, G.S.; Lin, M.T.; Bian, L.A. Terahertz metamaterial modulator based on phase change material VO2. Symmetry 2021, 13, 2230. [Google Scholar] [CrossRef]
- Yin, Z.P.; Wan, C.F.; Deng, G.S.; Zheng, A.D.; Wang, P.; Yang, Y.; Gao, S.; Yang, J.; Cai, F.; Li, Z.L.; et al. Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal. Appl. Sci. 2018, 8, 2454. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, J.; Que, L.C.; Zhou, Y.; Meng, W.W.; Jiang, Y.D. A double-band tunable perfect terahertz metamaterial absorber based on dirac semimetals. Results Phys. 2019, 15, 102773. [Google Scholar] [CrossRef]
- Wang, J.; Wan, X.G.; Jiang, Y.N. Tunable triple-band terahertz absorber based on bulk-dirac-semimetal metasurface. IEEE Photonics J. 2021, 13, 4600105. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.N.; Yang, Y.; Li, J.; Li, J.H.; Zhang, Y.T.; Yao, J.Q. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces. Opt. Express 2020, 28, 17832–17840. [Google Scholar] [CrossRef]
- Li, H.; Yu, J. Bifunctional terahertz absorber with a tunable and switchable property between broadband and dual-band. Opt. Express 2020, 28, 25225–25237. [Google Scholar] [CrossRef]
- Song, Z.Y.; Jiang, M.W.; Deng, Y.D.; Chen, A.P. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material. Opt. Commun. 2020, 464, 125494. [Google Scholar] [CrossRef]
- Bai, J.J.; Zhang, S.S.; Fan, F.; Wang, S.S.; Sun, X.D.; Miao, Y.P.; Chang, S.J. Tunable broadband thz absorber using vanadium dioxide metamaterials. Opt. Commun. 2019, 452, 292–295. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.J.; Tang, H.W.; Shen, T.; Zhang, H. Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene. Opt. Express 2022, 30, 6778–6785. [Google Scholar] [CrossRef]
- Lv, T.T.; Dong, G.H.; Qin, C.H.; Qu, J.; Lv, B.; Li, W.J.; Zhu, Z.; Li, Y.X.; Guan, C.Y.; Shi, J.H. Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO2 phase transition. Opt. Express 2021, 29, 5437–5447. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.H.; Cui, Q.; Wang, Y.; Yu, J. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Opt. Express 2020, 28, 40060–40074. [Google Scholar] [CrossRef]
- Feng, Q.Y.; Qiu, G.H.; Yan, D.X.; Li, J.N.; Li, X.J. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide. Chin. Opt. 2022, 15, 387–403. [Google Scholar]
- Liu, Y.; Huang, R.; Zhengbiao, O.Y. Numerical investigation of graphene and sto based tunable terahertz absorber with switchable bifunctionality of broadband and narrowband absorption. Nanomaterials 2021, 11, 2044. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Chen, G.Q.; Hou, Z.Y.; Zhang, Y.Z.; Shen, J.; Li, C.Y.; Zhao, M.L.; Gao, Z.Z.; Li, Z.Q.; Tang, T.T. Ultra-broadband tunable terahertz metamaterial absorber based on double-layer vanadium dioxide square ring arrays. Micromachines 2022, 13, 669. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.P.; Luo, Y.; Yang, H.; Yi, Z.; Zhang, J.G.; Song, Q.J.; Yang, W.X.; Liu, C.; Wu, X.W.; Wu, P.H. Thermal tuning of terahertz metamaterial absorber properties based on VO2. Phys. Chem. Chem. Phys. 2022, 24, 8846–8853. [Google Scholar] [CrossRef]
- Peng, H.; Yang, K.; Huang, Z.X.; Chen, Z. Broadband terahertz tunable multi-film absorber based on phase-change material. Appl. Opt. 2022, 61, 3101–3106. [Google Scholar] [CrossRef] [PubMed]
- Goktas, S.; Goktas, A. A comparative study on recent progress in efficient zno based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734. [Google Scholar] [CrossRef]
- Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510–3514. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Ma, W.L.; Huang, Z.Y.; Zhang, Y.; Huang, Y.; Chen, Y.S. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 2019, 7, 1801318. [Google Scholar] [CrossRef]
- Wang, B.X.; Wang, L.L.; Wang, G.Z.; Huang, W.Q.; Li, X.F.; Zhai, X. Metamaterial-based low-conductivity alloy perfect absorber. J. Lightwave Technol. 2014, 32, 2293–2298. [Google Scholar] [CrossRef]
- Cunningham, P.D.; Valdes, N.N.; Vallejo, F.A.; Hayden, L.M.; Polishak, B.; Zhou, X.H.; Luo, J.D.; Jen, A.K.Y.; Williams, J.C.; Twieg, R.J. Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 2011, 109, 043505. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, S.; Yu, X.Y. Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide. Opt. Commun. 2021, 501, 127358. [Google Scholar] [CrossRef]
- Yang, G.S.; Yan, F.P.; Du, X.M.; Li, T.; Wang, W.; Lv, Y.L.; Zhou, H.; Hou, Y.F. Tunable broadband terahertz metamaterial absorber based on vanadium dioxide. Aip Adv. 2022, 12, 045219. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Luo, Y.A.; Xu, J.K.; Wang, H.Y.; Han, H.Y.; Hu, D.; Zhu, Q.F.; Zhang, Y. Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption. Opt. Express 2021, 29, 42989–42998. [Google Scholar] [CrossRef]
- Lv, T.T.; Li, Y.C.; Qin, C.H.; Qu, J.; Lv, B.; Li, W.J.; Zhu, Z.; Li, Y.X.; Guan, C.Y.; Shi, J.H. Versatile polarization manipulation in vanadium dioxide-integrated terahertz metamaterial. Opt. Express 2022, 30, 5439–5449. [Google Scholar] [CrossRef]
- Gong, D.G.; Mei, J.S.; Li, N.C.; Shi, Y.C. Tunable metamaterial absorber based on VO2-graphene. Mater. Res. Express 2022, 9, 115803. [Google Scholar] [CrossRef]
- Wang, T.L.; Qu, L.Z.; Qu, L.F.; Zhang, Y.P.; Zhang, H.Y.; Cao, M.Y. Tunable broadband terahertz metamaterial absorber using multi-layer black phosphorus and vanadium dioxide. J. Phys. D Appl. Phys. 2020, 53, 145105. [Google Scholar] [CrossRef]
- Wang, S.X.; Kang, L.; Werner, D.H. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci. Rep. 2017, 7, 4326. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Zhao, Y.; Holtz, M.; Fan, Z.Y.; Bernussi, A.A. Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings. J. Opt. Soc. Am. B Opt. Phys. 2012, 29, 2373–2378. [Google Scholar] [CrossRef]
- Liu, M.K.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.B.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.W.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348. [Google Scholar] [CrossRef]
- Liu, C.B.; Yin, J.; Zhang, S. Temperature-tunable thz metamaterial absorber based on vanadium dioxide. Infrared Phys. Technol. 2021, 119, 103939. [Google Scholar] [CrossRef]
- Taylor, S.; Long, L.S.; McBurney, R.; Sabbaghi, P.; Chao, J.; Wang, L.P. Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling. Sol. Energy Mater. Sol. Cells 2020, 217, 110739. [Google Scholar] [CrossRef]
- Wang, Z.B.; Ma, Y.L.; Li, M.; Wu, L.F.; Guo, T.N.; Zheng, Y.J.; Chen, Q.; Fu, Y.Q. A thermal-switchable metamaterial absorber based on the phase-change material of vanadium dioxide. Nanomaterials 2022, 12, 3000. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Q.; Jin, Y.; He, S.L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B Opt. Phys. 2010, 27, 498–504. [Google Scholar] [CrossRef]
- Yu, S.W.; Li, Z.C.; Liu, W.W.; Cheng, H.; Zhang, Y.B.; Xie, B.Y.; Zhou, W.Y.; Tian, J.G.; Chen, S.Q. Tunable dual-band and high-quality-factor perfect absorption based on VO2-assisted metasurfaces. Opt. Express 2021, 29, 31488–31498. [Google Scholar] [CrossRef] [PubMed]
Reference | Whether It Has Two Absorption Modes | Broadband Absorption | Multiband Absorption |
---|---|---|---|
Bandwidth (Absorption Rate) | Number of Peak(s) | ||
[49] | Yes | 2.55 THz (>90.0%) | 3 |
[50] | Yes | 0.22 THz (>95.4%) | 2 |
[51] | Yes | 0.55 THz (>90.0%) | 2 |
[52] | Yes | 0.66 THz (>98.0%) | 3 |
[53] | Yes | 0.38 THz (>90.0%) | 1 |
[54] | No | 10.76 THz (>90.0%) | / |
[55] | No | 6.00 THz (>97.0%) | / |
[56] | No | 5.50 THz (>90.0%) | / |
This paper | Yes | 6.62 THz (>90.0%) | 3 |
Parameter | L1 | L2 | l1 | l2 | P | d |
Value (μm) | 11 | 14 | 14 | 5 | 16 | 0.5 |
Parameter | w1 | w2 | t1 | t2 | t3 | |
Value (μm) | 1 | 2 | 0.6 | 6 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Lin, H.; Tian, G.; Zhou, H.; Zhu, H.; Xiong, H.; Wang, B.-X. Triple-Band and Ultra-Broadband Switchable Terahertz Meta-Material Absorbers Based on the Hybrid Structures of Vanadium Dioxide and Metallic Patterned Resonators. Materials 2023, 16, 4719. https://doi.org/10.3390/ma16134719
Zou Y, Lin H, Tian G, Zhou H, Zhu H, Xiong H, Wang B-X. Triple-Band and Ultra-Broadband Switchable Terahertz Meta-Material Absorbers Based on the Hybrid Structures of Vanadium Dioxide and Metallic Patterned Resonators. Materials. 2023; 16(13):4719. https://doi.org/10.3390/ma16134719
Chicago/Turabian StyleZou, Yuke, Hongyan Lin, Gaowen Tian, Haiquan Zhou, Huaxin Zhu, Han Xiong, and Ben-Xin Wang. 2023. "Triple-Band and Ultra-Broadband Switchable Terahertz Meta-Material Absorbers Based on the Hybrid Structures of Vanadium Dioxide and Metallic Patterned Resonators" Materials 16, no. 13: 4719. https://doi.org/10.3390/ma16134719
APA StyleZou, Y., Lin, H., Tian, G., Zhou, H., Zhu, H., Xiong, H., & Wang, B.-X. (2023). Triple-Band and Ultra-Broadband Switchable Terahertz Meta-Material Absorbers Based on the Hybrid Structures of Vanadium Dioxide and Metallic Patterned Resonators. Materials, 16(13), 4719. https://doi.org/10.3390/ma16134719