Study of Biomass Composite Workpiece Support Structure Based on Selective Laser Sintering Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis of Warpage Causes
2.3. Methods
3. Results and Discussions
3.1. Analysis of Experimental Results of Grid-Type Supports
3.2. Analysis of Test Results of Concentric Type Support
3.3. Analysis of Experimental Results of Cross-Type Supports
3.4. Analysis of Optimal Support Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printing: Principles and pharmaceutical applications of selective laser sintering. Int. J. Pharm. 2020, 586, 119594. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Anand, S.; Sciarra, G. Process energy analysis and optimization in selective laser sintering. J. Manuf. Syst. 2012, 31, 429–437. [Google Scholar] [CrossRef]
- Hettesheimer, T.; Hirzel, S.; Ross, H.B.; Goyanes, A.; Gaisford, S. Energy savings through additive manufacturing: An analysis of selective laser sintering for automotive and aircraft components. Energy Effic. 2018, 11, 1227–1245. [Google Scholar] [CrossRef]
- Kim, D.H.; Zohdi, T.I. Tool path optimization of selective laser sintering processes using deep learning. Comput. Mech. 2021, 69, 383–401. [Google Scholar] [CrossRef]
- Chatham, C.A.; Long, T.E.; Williams, C.B. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog. Polym. Sci. 2019, 93, 68–95. [Google Scholar] [CrossRef]
- Lupone, F.; Padovano, E.; Nemeth, G.; Nemeth, S.; Badini, C. Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review. Materials 2022, 15, 183. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.; Hassen, A.A.; Baba, J.; Lindahl, J.; Love, L.; Kunc, V.; Babu, S.; Vaidya, U. An innovative digital image correlation technique for in-situ process monitoring of composite structures in large scale additive manufacturing. Compos. Struct. 2021, 276, 114545. [Google Scholar] [CrossRef]
- Paul, R.; Anand, S.; Gerner, F.M. Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes. J. Manuf. Sci. Eng. 2014, 51, 49–62. [Google Scholar] [CrossRef]
- Hopkinson, N.; Sercombe, T. Process repeatability and sources of error in indirect SLS of aluminium. Rapid Prototyp. J. 2008, 14, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ding, L.; Ullah, S.; Hu, T.; Xu, Y.; Chen, L.; Hanif, M. An improved medial axis path generation algorithm for selective laser melting. Addit. Manuf. 2020, 26, 1745–1759. [Google Scholar] [CrossRef]
- Ramani, K.S.; He, C.; Tsai, Y.-L.; Okwudire, C.E. SmartScan: An intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing. Rapid Prototyp. J. 2022, 52, 102643. [Google Scholar] [CrossRef]
- Zhang, C.; Ozcan, H.; Xue, L.; Atli, K.C.; Arróyave, R.; Karaman, I.; Elwany, A. On the effect of scan strategies on the transformation behavior and mechanical properties of additively manufactured NiTi shape memory alloys. J. Manuf. Process. 2022, 84, 260–271. [Google Scholar] [CrossRef]
- Gouveia, R.M.; Silva, F.J.G.; Atzeni, E.; Sormaz, D.; Alves, J.L.; Pereira, A.B. Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts. Materials 2020, 13, 2248. [Google Scholar] [CrossRef] [PubMed]
- Gülcan, O.; Günaydın, K.; Çelik, A.; Yasa, E. The effect of contactless support parameters on the mechanical properties of laser powder bed fusion produced overhang parts. Int. J. Adv. Manuf. Technol. 2022, 122, 3235–3253. [Google Scholar] [CrossRef]
- Huang, R.; Dai, N.; Cheng, X.; Wang, L. Topology optimization of lattice support structures for heat conduction in selective laser melting. Int. J. Adv. Manuf. Technol. 2020, 109, 1841–1851. [Google Scholar] [CrossRef]
- Gan, M.; Wong, C. Practical support structures for selective laser melting. J. Mater. Process. Technol. 2016, 238, 474–484. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Tan, S.; Ding, L.; Bernard, A. Support point determination for support structure design in additive manufacturing. Addit. Manuf. 2022, 122, 3235–3253. [Google Scholar] [CrossRef]
- Renkai, H.U.; Ning, D.A.; Xiaosheng, C.H. Optimization of Support Structures Based on Numerical Simulation of SLM Temperature Field. China Mech. Eng. 2021, 31, 2346–2354. [Google Scholar]
- Yu, Y.; Guo, Y.; Jiang, T.; Li, J.; Jiang, K.; Zhang, H. Study on the Ingredient Proportions and After-Treatment of Laser Sintering Walnut Shell Composites. Materials 2018, 10, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonkers, N.; van Dommelen, J.; Geers, M. Selective Laser Sintered food: A unit cell approach to design mechanical properties. J. Food Eng. 2022, 335, 111183. [Google Scholar] [CrossRef]
Temperature (°C) | Density (kg/m3) | Specific Heat Capacity (J/kg∙°C) | Thermal Conductivity (W/m∙°C) |
---|---|---|---|
20 | 656 | 2005 | 0.172 |
100 | 992 | 2105 | 0.243 |
160 | 992 | 2177 | 0.294 |
240 | 992 | 2244 | 0.375 |
300 | 992 | 2195 | 0.423 |
Level | Support Density ω (%) | Support Thickness δ (mm) |
---|---|---|
−1.682 | 5.85786 | 0.292893 |
−1 | 10 | 0.5 |
0 | 20 | 1 |
+1 | 30 | 1.5 |
+1.682 | 34.1421 | 1.70711 |
No. | Factors | Indicators | ||||
---|---|---|---|---|---|---|
ω (%) | δ (mm) | E (mm) | γ (mm) | t (min) | m (g) | |
1 | 20 | 0.292893 | 0.315 | 1.8999 | 1 | 17.79702 |
2 | 34.1421 | 1 | 0.26 | 0.71 | 17 | 20.43361 |
3 | 5.85786 | 1 | 0.281667 | 1.61833 | 4 | 18.45617 |
4 | 10 | 0.5 | 0.315 | 1.89 | 2 | 17.9618 |
5 | 20 | 1.70711 | 0.273 | 0.4879 | 20 | 20.92797 |
6 | 10 | 1.5 | 0.275 | 1.0667 | 10 | 19.2801 |
7 | 20 | 1 | 0.264 | 0.761667 | 11 | 19.3625 |
8 | 30 | 0.5 | 0.27 | 1.88167 | 6 | 18.53856 |
9 | 30 | 1.5 | 0.27 | 0.498333 | 25 | 21.76015 |
Indicators | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
E | Model | 0.0029 | 3 | 0.001 | 9 | 0.0185 |
ω | 0.0012 | 1 | 0.0012 | 11.69 | 0.0189 | |
δ | 0.0008 | 1 | 0.0008 | 7.69 | 0.0392 | |
ω2 | 0.0008 | 1 | 0.0008 | 7.62 | 0.0398 | |
Residual | 0.0005 | 5 | 0.0001 | |||
Cor Total | 0.0034 | 8 | ||||
γ | Model | 2.64 | 2 | 1.32 | 19.17 | 0.0025 |
ω | 2.21 | 1 | 2.21 | 32.06 | 0.0013 | |
δ | 0.433 | 1 | 0.433 | 6.29 | 0.0461 | |
Residual | 0.4133 | 6 | 0.0689 | |||
Cor Total | 3.06 | 8 | ||||
t | Model | 567.7 | 3 | 189.23 | 3159.97 | <0.0001 |
ω | 362.75 | 1 | 362.75 | 6057.45 | <0.0001 | |
δ | 174.7 | 1 | 174.7 | 2917.32 | <0.0001 | |
ωδ | 30.25 | 1 | 30.25 | 505.14 | <0.0001 | |
Residual | 0.2994 | 5 | 0.0599 | |||
Cor Total | 568 | 8 | ||||
m | Model | 15.24 | 3 | 5.08 | 1379.08 | <0.0001 |
ω | 10.05 | 1 | 10.05 | 2728.83 | <0.0001 | |
δ | 4.28 | 1 | 4.28 | 1162.57 | <0.0001 | |
ωδ | 0.9056 | 1 | 0.9056 | 245.84 | <0.0001 | |
Residual | 0.0184 | 5 | 0.0037 | |||
Cor Total | 15.26 | 8 |
No. | Factors | Indicators | ||||
---|---|---|---|---|---|---|
ω (%) | δ (mm) | E (mm) | γ (mm) | t (min) | m (g) | |
1 | 20 | 0.292893 | 0.19333 | 1.18167 | 1 | 17.797 |
2 | 34.1421 | 1 | 0.18 | 1.195 | 10 | 20.2688 |
3 | 5.85786 | 1 | 0.09 | 0.83 | 2 | 18.209 |
4 | 10 | 0.5 | 0.09167 | 0.943333 | 1 | 17.9618 |
5 | 20 | 1.70711 | 0.2694 | 0.75 | 11 | 20.6808 |
6 | 10 | 1.5 | 0.2333 | 0.786667 | 5 | 19.0329 |
7 | 20 | 1 | 0.15833 | 0.826667 | 6 | 19.1977 |
8 | 30 | 0.5 | 0.18167 | 1.07833 | 4 | 18.4562 |
9 | 30 | 1.5 | 0.2495 | 0.793333 | 14 | 21.5047 |
Indicators | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
E | Model | 0.029 | 3 | 0.0097 | 15.69 | 0.0056 |
ω | 0.0126 | 1 | 0.0126 | 20.36 | 0.0063 | |
δ | 0.0068 | 1 | 0.0068 | 11.04 | 0.0209 | |
ω2 | 0.0097 | 1 | 0.0097 | 15.67 | 0.0108 | |
Residual | 0.0031 | 5 | 0.0006 | |||
Cor Total | 0.0321 | 8 | ||||
γ | Model | 0.1925 | 2 | 0.0962 | 10.4 | 0.0112 |
ω | 0.1384 | 1 | 0.1384 | 14.95 | 0.0083 | |
δ | 0.0541 | 1 | 0.0541 | 5.84 | 0.0521 | |
Residual | 0.0555 | 6 | 0.0093 | |||
Cor Total | 0.248 | 8 | ||||
t | Model | 175.94 | 3 | 58.65 | 4775.76 | <0.0001 |
ω | 99 | 1 | 99 | 8061.71 | <0.0001 | |
δ | 67.94 | 1 | 67.94 | 5532.68 | <0.0001 | |
ωδ | 9 | 1 | 9 | 732.9 | <0.0001 | |
Residual | 0.0614 | 5 | 0.0123 | |||
Cor Total | 176 | 8 | ||||
m | Model | 13.7 | 3 | 4.57 | 11000.28 | <0.0001 |
ω | 8.4 | 1 | 8.4 | 20237.46 | <0.0001 | |
δ | 4.32 | 1 | 4.32 | 10408.42 | <0.0001 | |
ωδ | 0.9776 | 1 | 0.9776 | 2354.96 | <0.0001 | |
Residual | 0.0021 | 5 | 0.0004 | |||
Cor Total | 13.7 | 8 |
No. | Factors | Indicators | ||||
---|---|---|---|---|---|---|
ω (%) | δ (mm) | E (mm) | γ (mm) | t (min) | m (g) | |
1 | 20 | 0.292893 | 0.24767 | 0.863333 | 1 | 17.797 |
2 | 34.1421 | 1 | 0.20278 | 0.845833 | 11 | 19.7745 |
3 | 5.85786 | 1 | 0.2316 | 0.87015 | 2 | 18.1266 |
4 | 10 | 0.5 | 0.2467 | 0.871667 | 1 | 17.8794 |
5 | 20 | 1.70711 | 0.2713 | 0.825833 | 12 | 20.2688 |
6 | 10 | 1.5 | 0.26467 | 0.837667 | 5 | 18.9505 |
7 | 20 | 1 | 0.2133 | 0.858333 | 6 | 19.0329 |
8 | 30 | 0.5 | 0.2315 | 0.84667 | 4 | 18.2914 |
9 | 30 | 1.5 | 0.25383 | 0.831167 | 20 | 20.928 |
Indicators | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
E | Model | 0.0038 | 3 | 0.0013 | 18.81 | 0.0037 |
ω | 0.0007 | 1 | 0.0007 | 10.12 | 0.0245 | |
δ | 0.0006 | 1 | 0.0006 | 8.31 | 0.0345 | |
ω2 | 0.0026 | 1 | 0.0026 | 37.99 | 0.0016 | |
Residual | 0.0003 | 5 | 0.0001 | |||
Cor Total | 0.0041 | 8 | ||||
γ | Model | 0.0021 | 3 | 0.0007 | 26.34 | 0.0017 |
ω | 0.0013 | 1 | 0.0013 | 49.25 | 0.0009 | |
δ | 0.0005 | 1 | 0.0005 | 20.34 | 0.0063 | |
Residual | 0.0003 | 1 | 0.0003 | 9.43 | 0.0277 | |
Cor Total | 0.0001 | 5 | 0 | |||
t | Model | 312.06 | 3 | 104.02 | 58.89 | 0.0003 |
ω | 158.03 | 1 | 158.03 | 89.47 | 0.0002 | |
δ | 118.03 | 1 | 118.03 | 66.82 | 0.0004 | |
ωδ | 36 | 1 | 36 | 20.38 | 0.0063 | |
Residual | 8.83 | 5 | 1.77 | |||
Cor Total | 320.89 | 8 | ||||
m | Model | 9.88 | 3 | 3.29 | 1132.81 | <0.0001 |
ω | 6.49 | 1 | 6.49 | 2230.26 | <0.0001 | |
δ | 2.78 | 1 | 2.78 | 957.5 | <0.0001 | |
ωδ | 0.6127 | 1 | 0.6127 | 210.67 | <0.0001 | |
Residual | 0.0145 | 5 | 0.0029 | |||
Cor Total | 9.9 | 8 |
Pattern | Category | Factors | Indicators | ||||
---|---|---|---|---|---|---|---|
ω (%) | δ (mm) | E (mm) | γ (mm) | t (min) | m (g) | ||
Grid | Theoretical value | 7.399 | 1.464 | 0.281 | 1.007 | 7.811 | 18.953 |
Test value | 7 | 1.5 | 0.294 | 0.996 | 7.750 | 18.942 | |
Concentric | Theoretical value | 5.857 | 0.977 | 0.1 | 0.821 | 1.813 | 18.18 |
Test value | 6 | 1 | 0.1021 | 0.833 | 1.92 | 18.79 | |
Crossover | Theoretical value | 7.835 | 1.27 | 0.242 | 0.857 | 2.645 | 18.517 |
Test value | 8 | 1.3 | 0.249 | 0.835 | 2.786 | 18.559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Guo, Y.; Li, J.; Guo, Y.; Zhang, X.; Wang, Y. Study of Biomass Composite Workpiece Support Structure Based on Selective Laser Sintering Technology. Materials 2023, 16, 4644. https://doi.org/10.3390/ma16134644
Sun T, Guo Y, Li J, Guo Y, Zhang X, Wang Y. Study of Biomass Composite Workpiece Support Structure Based on Selective Laser Sintering Technology. Materials. 2023; 16(13):4644. https://doi.org/10.3390/ma16134644
Chicago/Turabian StyleSun, Tianai, Yanling Guo, Jian Li, Yifan Guo, Xinyue Zhang, and Yangwei Wang. 2023. "Study of Biomass Composite Workpiece Support Structure Based on Selective Laser Sintering Technology" Materials 16, no. 13: 4644. https://doi.org/10.3390/ma16134644
APA StyleSun, T., Guo, Y., Li, J., Guo, Y., Zhang, X., & Wang, Y. (2023). Study of Biomass Composite Workpiece Support Structure Based on Selective Laser Sintering Technology. Materials, 16(13), 4644. https://doi.org/10.3390/ma16134644