Quality of the Ceramic and Ni-Cr Alloy Joint after Al2O3 Abrasive Blasting
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Shear Strength and Its Dependence on Thermal Loads
4.2. Influence of Surface Roughness Parameters on Shear Strength
5. Conclusions
- There is a close correlation between the strength of the Ni-Cr alloy–dental ceramic joint and the alloy roughness parameters after abrasive blasting: Rpk, Rsm, Rsk and RPc.
- The application of abrasive blasting under 600 kPa pressure makes the alloy–ceramic joint durable in the operating conditions under thermal load.
- The most optimal blasting parameters are 600 kPa pressure with 110 µm Al2O3 particles (p < 0.05). These parameters allow the highest bond strength to be achieved between the Ni-Cr alloy and dental ceramics.
- Variable thermal load reduces the strength of the bond, irrespective of abrasive blasting parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Czepułkowska, W.; Wołowiec-Korecka, E.; Klimek, L. The Role of Mechanical, Chemical and Physical Bonds in Metal-Ceramic Bond Strength. Arch. Mater. Sci. Eng. 2018, 92, 5–14. [Google Scholar] [CrossRef][Green Version]
- Schweitzer, D.; Goldstein, G.; Ricci, J.; Silva, N.; Hittelman, E. Comparison of Bond Strength of a Pressed Ceramic Fused to Metal versus Feldspathic Porcelain Fused to Metal. J. Prosthodont. 2005, 14, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Śmielak, B.; Świniarski, J.; Wołowiec-Korecka, E.; Klimek, L. 2D-Finite Element Analysis of Inlay-, Onlay Bridges with Using Various Materials. Arch. Mater. Sci. Eng. 2016, 79, 71–78. [Google Scholar] [CrossRef][Green Version]
- Śmielak, B.; Gołębiowski, M.; Klimek, L.; Wołowiec, E. Effect of Surface Treatment of Titanium Elements on the Bond Strength to Zirconium Dioxide. Solid State Phenom. 2014, 225, 151–158. [Google Scholar] [CrossRef]
- Śmielak, B.; Klimek, L.; Świniarski, J. The Use of the FEM to Identify the Optimal Groove Dimensions Ensuring the Least Stressed Connection between a Zirconia Coping and Veneering Ceramic. Materials 2018, 11, 2360. [Google Scholar] [CrossRef][Green Version]
- Śmielak, B.; Klimek, L.; Wojciechowski, R.; Bąkała, M. Effect of Zirconia Surface Treatment on Its Wettability by Liquid Ceramics. J. Prosthet. Dent. 2019, 122, 410.e1–410.e6. [Google Scholar] [CrossRef]
- Külünk, T.; Kurt, M.; Ural, Ç.; Külünk, Ş.; Baba, S. Effect of Different Air-Abrasion Particles on Metal-Ceramic Bond Strength. J. Dent. Sci. 2011, 6, 140–146. [Google Scholar] [CrossRef][Green Version]
- Pietnicki, K.; Wołowiec, E.; Klimek, L. The Effect of Abrasive Blasting on the Strength of a Joint between Dental Porcelain and Metal Base. Acta Bioeng. Biomech. 2014, 16, 63–68. [Google Scholar] [CrossRef]
- Gołębiowski, M.; Wołowiec, E.; Klimek, L. Airborne-Particle Abrasion Parameters on the Quality of Titanium-Ceramic Bonds. J. Prosthet. Dent. 2015, 113, 453–459. [Google Scholar] [CrossRef][Green Version]
- Tarib, N.A.; Anuar, N.; Ahmad, M. Shear Bond Strength of Veneering Ceramic to Coping Materials with Different Pre-Surface Treatments. J. Adv. Prosthodont. 2016, 8, 339. [Google Scholar] [CrossRef][Green Version]
- Taga, Y.; Kawai, K.; Nokubi, T. New Method for Divesting Cobalt-Chromium Alloy Castings: Sandblasting with a Mixed Abrasive Powder. J. Prosthet. Dent. 2001, 85, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Inan, Ö.; Acar, A.; Halkaci, S. Effects of Sandblasting and Electrical Discharge Machining on Porcelain Adherence to Cast and Machined Commercially Pure Titanium. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 78B, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Czepułkowska, W.; Wołowiec-Korecka, E.; Klimek, L. The Condition of Ni-Cr Alloy Surface after Abrasive Blasting with Various Parameters. J. Mater. Eng. Perform. 2020, 29, 1439–1444. [Google Scholar] [CrossRef][Green Version]
- Czepułkowska-Pawlak, W.; Wołowiec-Korecka, E.; Klimek, L. The Surface Condition of Ni-Cr after SiC Abrasive Blasting for Applications in Ceramic Restorations. Materials 2020, 13, 5824. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-J.; Song, K.-Y.; Ahn, S.-G.; Choi, J.-Y.; Seo, J.-M.; Park, J.-M. Evaluation of Effect of Galvanic Corrosion between Nickel-Chromium Metal and Titanium on Ion Release and Cell Toxicity. J. Adv. Prosthodont. 2015, 7, 172–177. [Google Scholar] [CrossRef][Green Version]
- Milheiro, B.; Nozaki, K.; Kleverlaan, C.; Muris, J.; Miura, H.; Feilzer, A. In Vitro Cytotoxicity of Metallic Ions Released from Dental Alloys. Odontology 2016, 104, 136–142. [Google Scholar] [CrossRef]
- Kula, Z.; Semenov, M.; Klimek, L. Carbon Coatings Deposited on Prosthodontic Ni-Cr Alloy. Appl. Sci. 2021, 11, 4551. [Google Scholar] [CrossRef]
- Nematia, A.; Saghafia, M.; Khamseh, S.; Alibakhshic, E.; Zarrintajd, P.; Saebe, M. Magnetron-Sputtered TixNy Thin Films Applied on Titanium-Based Alloys for Biomedical Applications: Composition-Microstructure-Property Relationships. Surf. Coat. Technol. 2018, 349, 251–259. [Google Scholar] [CrossRef]
- Banaszek, K.; Wiktorowska-Owczarek, A.; Kowalczyk, E.; Klimek, L. Possibilities of Applying Ti (C, N) Coatings on Prosthetic Elements-Research with the Use of Human Endothelial Cells. Acta Bioeng. Biomech. 2016, 18, 119–126. [Google Scholar]
- Banaszek, K.; Klimek, L.; Zgorzyńska, E.; Swarzyńska, A.; Walczewska, A. Cytotoxicity of Titanium Carbonitride Coatings for Prostodontic Alloys with Different Amounts of Carbon and Nitro Gen. Biomed. Mater. 2018, 13, 045003. [Google Scholar] [CrossRef]
- Banaszek, K.; Klimek, L. Ti(C, N) as Barrier Coatings. Coatings 2019, 9, 432. [Google Scholar] [CrossRef][Green Version]
- Banaszek, K.; Klimek, L.; Dąbrowski, J.R.; Jastrzębski, W. Fretting Wear in Orthodontic and Prosthetic Alloys with Ti(C, N) Coatings. Processes 2019, 7, 874. [Google Scholar] [CrossRef][Green Version]
- Banaszek, K.; Szymanski, W.; Pietrzyk, B.; Klimek, L. Adhesion of E. coli Bacteria Cells to Prosthodontic Alloys Surfaces Modified by TiO2 Sol-Gel Coatings. Adv. Mater. Sci. Eng. 2013, 2013, 179241. [Google Scholar] [CrossRef][Green Version]
- Tróia, M.G.; Henriques, G.E.; Nóbilo, M.A.; Mesquita, M.F. The Effect of Thermal Cycling on the Bond Strength of Low-Fusing Porcelain to Commercially Pure Titanium and Titanium–Aluminium–Vanadium Alloy. Dent. Mater. 2003, 19, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Oyafuso, D.; Özcan, M.; Bottino, M.; Itinoche, M. Influence of Thermal and Mechanical Cycling on the Flexural Strength of Ceramics with Titanium or Gold Alloy Frameworks. Dent. Mater. 2008, 24, 351–356. [Google Scholar] [CrossRef]
- Vásquez, V.; Özcan, M.; Nishioka, R.; Souza, R.; Mesquita, A.; Pavanelli, C. Mechanical and Thermal Cycling Effects on the Flexural Strength of Glass Ceramics Fused to Titanium. Dent. Mater. J. 2008, 27, 7–15. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Antanasova, M.; Kocjan, A.; Kovač, J.; Žužek, B.; Jevnikar, P. Influence of Thermo-Mechanical Cycling on Porcelain Bonding to Cobalt–Chromium and Titanium Dental Alloys Fabricated by Casting, Milling, and Selective Laser Melting. J. Prosthodont. Res. 2018, 62, 184–194. [Google Scholar] [CrossRef]
- De Vasconcellos, L.; Silva, L.; de Vasconcellos, L.; Balducci, I.; Takahashi, F.; Bottino, M. Effect of Airborne-Particle Abrasion and Mechanico-Thermal Cycling on the Flexural Strength of Glass Ceramic Fused to Gold or Cobalt–Chromium Alloy. J. Prosthodont. 2011, 20, 553–560. [Google Scholar] [CrossRef]
- Fisher, J.; Zbären, C.; Stawarczyk, B.; Hämmerle, C.H. The Effect of Thermal Cycling on Metal-Ceramic Bond Strength. J. Dent. 2009, 37, 549–553. [Google Scholar] [CrossRef]
- Shimoe, S.; Tanoue, N.; Yanagida, H.; Atsuta, M.; Koizumi, H.; Matsumura, H. Comparative Strength of Metal-Ceramic and Metal-Composite Bonds after Extended Thermocycling. J. Oral Rehabil. 2004, 31, 689–694. [Google Scholar] [CrossRef]
- De Vasconcellos, L.G.; Buso, L.; Lombardo, G.H.; Souza, R.O.; Nogueira, L.; Bottino, M.A.; Özcan, M. Opaque Layer Firing Temperature and Aging Effect on the Flexural Strength of Ceramic Fused to Cobalt-Chromium Alloy. J. Prosthodont. 2010, 19, 471–477. [Google Scholar] [CrossRef] [PubMed]
Mo | Fe | Ta | Si | Co | Cr | Mn | Nb | Ni |
---|---|---|---|---|---|---|---|---|
9.21 | 1.53 | 0.19 | 1.54 | 0.15 | 24.63 | 0.42 | 0.48 | residue |
Al2O3 Abrasive Particle Size [µm] | Processing Pressure [kPa] | |
---|---|---|
400 | 600 | |
50 | A45 | A65 |
110 | A41 | A61 |
250 | A42 | A62 |
Layer No | Temp. (Max) [°C] | Resting Temp. [°C] | Drying Time [min] | Rise Temp. [°C] | Time [min] | V1 Temp. [°C] | V2 Temp. [°C] |
---|---|---|---|---|---|---|---|
Opaque | |||||||
I | 980 | 403 | 6 | 80 | 1 | 550 | 979 |
II | 970 | 403 | 6 | 80 | 1 | 550 | 969 |
Dentine | |||||||
I | 920 | 403 | 4 | 60 | 1 | 580 | 919 |
II | 910 | 403 | 4 | 60 | 1 | 580 | 909 |
Pressure [kPa] | Al2O3 Particle Size [µm] | Bond Strength [MPa] (Mean ± SD) | ||
---|---|---|---|---|
No Thermocycles | Thermocycles | Total (Particle Size × Pressure) | ||
400 | 50 | 26.66 ± 5.49 | 19.18 ± 2.55 | 22.92 ± 5.67 |
400 | 110 | 28.05 ± 3.83 | 18.08 ± 3.43 | 23.07 ± 6.21 |
400 | 250 | 27.58 ± 2.99 | 18.75 ± 3.44 | 23.17 ± 5.50 |
600 | 50 | 16.48 ± 3.39 | 18.03 ± 3.98 | 17.25 ± 3.70 |
600 | 110 | 24.39 ± 4.49 | 22.06 ± 3.23 | 23.22 ± 4.01 |
600 | 250 | 21.81 ± 4.53 | 18.06 ± 2.31 | 19.93 ± 4.01 |
Total (Thermocycles) | 24.16 ± 5.74 | 19.03 ± 3.41 | 21.59 ± 5.36 | |
3-factor ANOVA | ||||
Factor | F | p | Partial eta2 | Power |
Pressure | 21.92 | 0.000 | 0.142 | 0.996 |
Particle size | 8.03 | 0.001 | 0.108 | 0.953 |
Thermocycles | 67.90 | 0.000 | 0.340 | 1.000 |
Pressure × Particle size | 7.35 | 0.001 | 0.100 | 0.934 |
Pressure × Thermocycles | 33.81 | 0.000 | 0.204 | 1.000 |
Particle size × Thermocycles | 3.04 | 0.051 | 0.044 | 0.580 |
Pressure × Particle size × Thermocycles | 0.86 | 0.426 | 0.013 | 0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimek, L.; Wołowiec-Korecka, E.; Czepułkowska-Pawlak, W.; Kula, Z. Quality of the Ceramic and Ni-Cr Alloy Joint after Al2O3 Abrasive Blasting. Materials 2023, 16, 3800. https://doi.org/10.3390/ma16103800
Klimek L, Wołowiec-Korecka E, Czepułkowska-Pawlak W, Kula Z. Quality of the Ceramic and Ni-Cr Alloy Joint after Al2O3 Abrasive Blasting. Materials. 2023; 16(10):3800. https://doi.org/10.3390/ma16103800
Chicago/Turabian StyleKlimek, Leszek, Emilia Wołowiec-Korecka, Weronika Czepułkowska-Pawlak, and Zofia Kula. 2023. "Quality of the Ceramic and Ni-Cr Alloy Joint after Al2O3 Abrasive Blasting" Materials 16, no. 10: 3800. https://doi.org/10.3390/ma16103800
APA StyleKlimek, L., Wołowiec-Korecka, E., Czepułkowska-Pawlak, W., & Kula, Z. (2023). Quality of the Ceramic and Ni-Cr Alloy Joint after Al2O3 Abrasive Blasting. Materials, 16(10), 3800. https://doi.org/10.3390/ma16103800