Composition and Structure of NiCoFeCr and NiCoFeCrMn High-Entropy Alloys Irradiated by Helium Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Composition and Structure of Unirradiated HEAs CoCrFeNi and CoCrFeMnNi
3.2. Composition and Structure of CoCrFeNi and CoCrFeMnNi HEAs Irradiated by Helium Ions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-Entropy Alloy: Challenges and Prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Manzoni, A.M.; Glatzel, U. High-Entropy Alloys: Balancing Strength and Ductility at Room Temperature. In Encyclopedia of Materials: Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2022; pp. 441–453. ISBN 978-0-12-819733-2. [Google Scholar]
- Li, W.; Xie, D.; Li, D.; Zhang, Y.; Gao, Y.; Liaw, P.K. Mechanical Behavior of High-Entropy Alloys. Prog. Mater. Sci. 2021, 118, 100777. [Google Scholar] [CrossRef]
- Zhang, X.; Hattar, K.; Chen, Y.; Shao, L.; Li, J.; Sun, C.; Yu, K.; Li, N.; Taheri, M.L.; Wang, H.; et al. Radiation Damage in Nanostructured Materials. Prog. Mater. Sci. 2018, 96, 217–321. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-Entropy Alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Meghwal, A.; Anupam, A.; Murty, B.S.; Berndt, C.C.; Kottada, R.S.; Ang, A.S.M. Thermal Spray High-Entropy Alloy Coatings: A Review. J. Therm. Spray Technol. 2020, 29, 857–893. [Google Scholar] [CrossRef]
- Xia, S.Q.; Yang, X.; Yang, T.F.; Liu, S.; Zhang, Y. Irradiation Resistance in AlxCoCrFeNi High Entropy Alloys. JOM 2015, 67, 2340–2344. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Tanigawa, H.; Wirth, B.D. Radiation and Thermomechanical Degradation Effects in Reactor Structural Alloys. In Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–210. ISBN 978-0-12-397046-6. [Google Scholar]
- Son, S.; Kim, S.; Kwak, J.; Gu, G.H.; Hwang, D.S.; Kim, Y.-T.; Kim, H.S. Superior Antifouling Properties of a CoCrFeMnNi High-Entropy Alloy. Mater. Lett. 2021, 300, 130130. [Google Scholar] [CrossRef]
- Yu, P.F.; Zhang, L.J.; Cheng, H.; Zhang, H.; Ma, M.Z.; Li, Y.C.; Li, G.; Liaw, P.K.; Liu, R.P. The High-Entropy Alloys with High Hardness and Soft Magnetic Property Prepared by Mechanical Alloying and High-Pressure Sintering. Intermetallics 2016, 70, 82–87. [Google Scholar] [CrossRef][Green Version]
- Koval, N.E.; Juaristi, J.I.; Díez Muiño, R.; Alducin, M. Structure and Properties of CoCrFeNiX Multi-Principal Element Alloys from Ab Initio Calculations. J. Appl. Phys. 2020, 127, 145102. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Miracle, D.B.; Woodward, C.F. Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy. J. Alloys Compd. 2011, 509, 6043–6048. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Karati, A.; Guruvidyathri, K.; Hariharan, V.S.; Murty, B.S. Thermal Stability of AlCoFeMnNi High-Entropy Alloy. Scr. Mater. 2019, 162, 465–467. [Google Scholar] [CrossRef]
- Pacheco, V.; Lindwall, G.; Karlsson, D.; Cedervall, J.; Fritze, S.; Ek, G.; Berastegui, P.; Sahlberg, M.; Jansson, U. Thermal Stability of the HfNbTiVZr High-Entropy Alloy. Inorg. Chem. 2019, 58, 811–820. [Google Scholar] [CrossRef]
- Kukshal, V.; Patnaik, A.; Bhat, I.K. Effect of Mn on Corrosion and Thermal Behaviour of AlCr1.5 CuFeNi2 Mnx High-Entropy Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012023. [Google Scholar] [CrossRef][Green Version]
- Yu, K.; Zhao, W.; Li, Z.; Guo, N.; Xiao, G.; Zhang, H. High-Temperature Oxidation Behavior and Corrosion Resistance of in-Situ TiC and Mo Reinforced AlCoCrFeNi-Based High Entropy Alloy Coatings by Laser Cladding. Ceram. Int. 2023, 49, 10151–10164. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, J.; Cheng, Q. Microstructure and Sliding Wear Behavior of (AlCoCrFeNi)1-x(WC)x. Ceram. Int. 2022, 48, 19399–19411. [Google Scholar] [CrossRef]
- Xia, S.; Wang, Z.; Yang, T.; Zhang, Y. Irradiation Behavior in High Entropy Alloys. J. Iron Steel Res. Int. 2015, 22, 879–884. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, H.; Gao, X.; Ren, C.; Gao, J.; Zhang, H.; Zheng, S.; Jin, Q.; Zhao, Y.; Lu, C.; et al. A Promising New Class of Irradiation Tolerant Materials: Ti2ZrHfV0.5Mo0.2 High-Entropy Alloy. J. Mater. Sci. Technol. 2019, 35, 369–373. [Google Scholar] [CrossRef]
- Jones, N.G.; Owen, L.R. Lattice Distortion in High-Entropy Alloys. In Encyclopedia of Materials: Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2022; pp. 393–401. ISBN 978-0-12-819733-2. [Google Scholar]
- Tian, Y.; Li, L.; Li, J.; Yang, Y.; Li, S.; Qin, G. Correlating Strength and Hardness of High-Entropy Alloys. Adv. Eng. Mater. 2021, 23, 2001514. [Google Scholar] [CrossRef]
- Song, H.; Ma, Q.; Zhang, W.; Tian, F. Effects of Vacancy on the Thermodynamic Properties of Co-Cr-Fe-Mn-Ni High-Entropy Alloys. J. Alloys Compd. 2021, 885, 160944. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, E.-H.; Xiang, C. Effect of Helium Ion Irradiation on Short-Time Corrosion Behavior of Two Novel High-Entropy Alloys in Simulated PWR Primary Water. Corros. Sci. 2021, 191, 109742. [Google Scholar] [CrossRef]
- Zhang, Z.; Armstrong, D.E.J.; Grant, P.S. The Effects of Irradiation on CrMnFeCoNi High-Entropy Alloy and Its Derivatives. Prog. Mater. Sci. 2022, 123, 100807. [Google Scholar] [CrossRef]
- Zhao, S.; Egami, T.; Stocks, G.M.; Zhang, Y. Effect of d Electrons on Defect Properties in Equiatomic NiCoCr and NiCoFeCr Concentrated Solid Solution Alloys. Phys. Rev. Mater. 2018, 2, 013602. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, S.; Sun, J.; Tai, P.; Sheng, Y.; Zhao, Y.; Yeli, G.; Lin, W.; Liu, S.; Kai, W.; et al. Diffusion Controlled Helium Bubble Formation Resistance of FeCoNiCr High-Entropy Alloy in the Half-Melting Temperature Regime. J. Nucl. Mater. 2019, 526, 151747. [Google Scholar] [CrossRef]
- Chen, D.; Tong, Y.; Li, H.; Wang, J.; Zhao, Y.L.; Hu, A.; Kai, J.J. Helium Accumulation and Bubble Formation in FeCoNiCr Alloy under High Fluence He+ Implantation. J. Nucl. Mater. 2018, 501, 208–216. [Google Scholar] [CrossRef]
- Yang, L.; Ge, H.; Zhang, J.; Xiong, T.; Jin, Q.; Zhou, Y.; Shao, X.; Zhang, B.; Zhu, Z.; Zheng, S.; et al. High He-Ion Irradiation Resistance of CrMnFeCoNi High-Entropy Alloy Revealed by Comparison Study with Ni and 304SS. J. Mater. Sci. Technol. 2019, 35, 300–305. [Google Scholar] [CrossRef]
- Huang, S.S.; Guan, H.Q.; Zhong, Z.H.; Miyamoto, M.; Xu, Q. Effect of He on the Irradiation Resistance of Equiatomic CoCrFeMnNi High-Entropy Alloy. J. Nucl. Mater. 2022, 561, 153525. [Google Scholar] [CrossRef]
- Tuomisto, F.; Makkonen, I.; Heikinheimo, J.; Granberg, F.; Djurabekova, F.; Nordlund, K.; Velisa, G.; Bei, H.; Xue, H.; Weber, W.J.; et al. Segregation of Ni at Early Stages of Radiation Damage in NiCoFeCr Solid Solution Alloys. Acta Mater. 2020, 196, 44–51. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Pradeep, K.G.; Kuběnová, M.; Raabe, D.; Eggeler, G.; George, E.P. Decomposition of the Single-Phase High-Entropy Alloy CrMnFeCoNi after Prolonged Anneals at Intermediate Temperatures. Acta Mater. 2016, 112, 40–52. [Google Scholar] [CrossRef][Green Version]
- Pickering, E.J.; Muñoz-Moreno, R.; Stone, H.J.; Jones, N.G. Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi. Scr. Mater. 2016, 113, 106–109. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S.; Bhattacharjee, P.P. High-Entropy Alloys; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-816068-8. [Google Scholar]
- Lee, C.; Chou, Y.; Kim, G.; Gao, M.C.; An, K.; Brechtl, J.; Zhang, C.; Chen, W.; Poplawsky, J.D.; Song, G.; et al. Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy. Adv. Mater. 2020, 32, 2004029. [Google Scholar] [CrossRef]
- Rogachev, A.S. Structure, stability and propoerties of high-entropy alloys (Структура, стабильнoсть и свoйства высoкoэнтрoпийных сплавoв). Phys. Met. Metallogr. 2020, 121, 807–841. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Zhu, Z.; Huang, H.; Lu, Y.; Wang, T.; Li, T. Effects of He-Ion Irradiation on the Microstructures and Mechanical Properties of the Novel Co-Free V CrFeMnNi High-Entropy Alloys. J. Nucl. Mater. 2022, 572, 154074. [Google Scholar] [CrossRef]
- Tong, Y.; Velisa, G.; Zhao, S.; Guo, W.; Yang, T.; Jin, K.; Lu, C.; Bei, H.; Ko, J.Y.P.; Pagan, D.C.; et al. Evolution of Local Lattice Distortion under Irradiation in Medium- and High-Entropy Alloys. Materialia 2018, 2, 73–81. [Google Scholar] [CrossRef]
- Zhu, Y.; Chai, J.; Wang, Z.; Shen, T.; Niu, L.; Li, S.; Jin, P.; Zhang, H.; Li, J.; Cui, M. Microstructural Damage Evolution of (WTiVNbTa)C5 High-Entropy Carbide Ceramics Induced by Self-Ions Irradiation. J. Eur. Ceram. Soc. 2022, 42, 2567–2576. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sarkar, A.; Bhattacharya, M.; Gayathri, N.; Barat, P. Post-Irradiated Microstructural Characterisation of Cold-Worked SS316L by X-Ray Diffraction Technique. J. Nucl. Mater. 2009, 395, 37–44. [Google Scholar] [CrossRef]
- Alsabbagh, A.; Sarkar, A.; Miller, B.; Burns, J.; Squires, L.; Porter, D.; Cole, J.I.; Murty, K.L. Microstructure and Mechanical Behavior of Neutron Irradiated Ultrafine Grained Ferritic Steel. Mater. Sci. Eng. A 2014, 615, 128–138. [Google Scholar] [CrossRef]
- Batyrbekov, E.; Gluchshenko, N.; Gorlachev, I.; Ivanov, I.; Platov, A. X-ray production cross section for K-, L- and M-shell by 14 MeV and 19.6 MeV nitrogen. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 330, 86–90. [Google Scholar] [CrossRef]
- Doolittle, L. RUMP: Rutherford backscattering spectroscopy analysis package. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1985, 9, 344–351. [Google Scholar] [CrossRef]
- Baczmanski, A.; Lark, R.J.; Skrzypek, S.J. Application of Non-Linear Sin2ψ Method for Stress Determination Using X-ray Diffraction; Trans Tech Publications: Uetikon-Zuerich, Switzerland; Coimbra, Portugal, 2002; Volume 404–407, pp. 29–34. [Google Scholar]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef][Green Version]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef][Green Version]
- Gianelle, M.A.; Clapp, C.; Kundu, A.; Chan, H.M. Solid state processing of the cantor derived alloy CoCrFeMnNi by oxide reduction. Results Mater. 2022, 14, 100286. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer: New York, NY, USA, 2017; ISBN 978-1-4939-3436-2. [Google Scholar]
- Fukahori, T.; Kanda, Y.; Mori, K.; Tobimatsu, H. Helium trapping in aluminium near the critical dose on blister formation. J. Nucl. Mater. 1985, 133–134, 277–279. [Google Scholar] [CrossRef]
- Shi, S.; He, M.-R.; Jin, K.; Bei, H.; Robertson, I.M. Evolution of Ion Damage at 773K in Ni-Containing Concentrated Solid-Solution Alloys. J. Nucl. Mater. 2018, 501, 132–142. [Google Scholar] [CrossRef]
- Jin, K.; Lu, C.; Wang, L.M.; Qu, J.; Weber, W.J.; Zhang, Y.; Bei, H. Effects of Compositional Complexity on the Ion-Irradiation Induced Swelling and Hardening in Ni-Containing Equiatomic Alloys. Scr. Mater. 2016, 119, 65–70. [Google Scholar] [CrossRef][Green Version]
- Lu, C.; Yang, T.; Jin, K.; Gao, N.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Weber, W.J.; Sun, K.; et al. Radiation-Induced Segregation on Defect Clusters in Single-Phase Concentrated Solid-Solution Alloys. Acta Mater. 2017, 127, 98–107. [Google Scholar] [CrossRef]
- Qian, L.; Bao, H.; Li, R.; Peng, Q. Atomistic Insights of a Chemical Complexity Effect on the Irradiation Resistance of High Entropy Alloys. Mater. Adv. 2022, 3, 1680–1686. [Google Scholar] [CrossRef]
- Xu, Q.; Guan, H.Q.; Huang, S.S.; Zhong, Z.H.; Watanabe, H.; Tokitani, M. Compositional Stability in Medium and High-Entropy Alloys of CoCrFeMnNi System under Ion Irradiation. J. Alloys Compd. 2022, 925, 166697. [Google Scholar] [CrossRef]
- Harrison, R.W.; Greaves, G.; Le, H.; Bei, H.; Zhang, Y.; Donnelly, S.E. Chemical Effects on He Bubble Superlattice Formation in High Entropy Alloys. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100762. [Google Scholar] [CrossRef]
- Fan, Z.; Zhong, W.; Jin, K.; Bei, H.; Osetsky, Y.N.; Zhang, Y. Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy. J. Mater. Res. 2021, 36, 298. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, S.A.; Sharma, S.K.; Sudarshan, K.; Sharma, S.K.; Singh, C.; Kulriya, P.K. Influence of Defect Dynamics on the Nanoindentation Hardness in NiCoCrFePd High Entropy Alloy under High Dose Xe+3 Irradiation. Mater. Sci. Eng. A 2023, 863, 144523. [Google Scholar] [CrossRef]
- Waseem, O.A.; Ryu, H.J. Helium Ions Irradiation Analysis of W0.5(TaTiVCr)0.5 for Application as a Future Fusion Plasma-Facing Material. Mater. Chem. Phys. 2021, 260, 124198. [Google Scholar] [CrossRef]
- Feltrin, A.C.; Xing, Q.; Akinwekomi, A.D.; Waseem, O.A.; Akhtar, F. Review of Novel High-Entropy Protective Materials: Wear, Irradiation, and Erosion Resistance Properties. Entropy 2022, 25, 73. [Google Scholar] [CrossRef] [PubMed]
- Trinkaus, H.; Singh, B.N. Helium Accumulation in Metals during Irradiation—Where Do We Stand? J. Nucl. Mater. 2003, 323, 229–242. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, D.; Kai, J.-J. First-Principles Study of He Behavior in a NiCoFeCr Concentrated Solid–Solution Alloy. Mater. Res. Lett. 2019, 7, 188–193. [Google Scholar] [CrossRef][Green Version]
- Tunes, M.A.; Le, H.; Greaves, G.; Schön, C.G.; Bei, H.; Zhang, Y.; Edmondson, P.D.; Donnelly, S.E. Investigating Sluggish Diffusion in a Concentrated Solid Solution Alloy Using Ion Irradiation with in Situ TEM. Intermetallics 2019, 110, 106461. [Google Scholar] [CrossRef][Green Version]
Sample | Concentration of Elements, at.% | ||||
---|---|---|---|---|---|
Ni | Co | Fe | Cr | Mn | |
CoCrFeNi (unirradiated) | 17.9 | 28.9 | 26.2 | 26 | – |
CoCrFeNi (Не2+, 5 × 1016 cm−2) | 19.8 | 27.5 | 27.7 | 25 | – |
CoCrFeNi (Не2+, 2 × 1017 cm−2) | 18.5 | 31 | 25 | 25.5 | – |
CoCrFeMnNi (unirradiated) | 17.9 | 22.3 | 17.9 | 20 | 21.9 |
CoCrFeMnNi (Не2+, 5 × 1016 cm−2) | 19.6 | 18.8 | 18.3 | 21.3 | 22 |
CoCrFeMnNi (Не2+, 2 × 1017 cm−2) | 21 | 19.7 | 20.6 | 18.4 | 20.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanzhulov, B.; Ivanov, I.; Uglov, V.; Zlotski, S.; Ryskulov, A.; Kurakhmedov, A.; Koloberdin, M.; Zdorovets, M. Composition and Structure of NiCoFeCr and NiCoFeCrMn High-Entropy Alloys Irradiated by Helium Ions. Materials 2023, 16, 3695. https://doi.org/10.3390/ma16103695
Amanzhulov B, Ivanov I, Uglov V, Zlotski S, Ryskulov A, Kurakhmedov A, Koloberdin M, Zdorovets M. Composition and Structure of NiCoFeCr and NiCoFeCrMn High-Entropy Alloys Irradiated by Helium Ions. Materials. 2023; 16(10):3695. https://doi.org/10.3390/ma16103695
Chicago/Turabian StyleAmanzhulov, Bauyrzhan, Igor Ivanov, Vladimir Uglov, Sergey Zlotski, Azamat Ryskulov, Alisher Kurakhmedov, Mikhail Koloberdin, and Maxim Zdorovets. 2023. "Composition and Structure of NiCoFeCr and NiCoFeCrMn High-Entropy Alloys Irradiated by Helium Ions" Materials 16, no. 10: 3695. https://doi.org/10.3390/ma16103695
APA StyleAmanzhulov, B., Ivanov, I., Uglov, V., Zlotski, S., Ryskulov, A., Kurakhmedov, A., Koloberdin, M., & Zdorovets, M. (2023). Composition and Structure of NiCoFeCr and NiCoFeCrMn High-Entropy Alloys Irradiated by Helium Ions. Materials, 16(10), 3695. https://doi.org/10.3390/ma16103695