Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Material Preparation
2.2. LSP Experiment Setup
2.3. Characterization Methods
3. Experimental Results and Discussion
3.1. Surface Topography Evolution and Contact Angle
3.2. XRD Analysis
3.3. Surface Residual Stress
3.4. Microhardness
3.5. Microstructural Evolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.D.; Liu, L.B.; Wang, J.L.; Zheng, F.; Jin, Z.P. Application of high-efficiency combinatorial approach in biomedical titanium alloy. Chin. J. Nonferrous Met. 2014, 24, 2836–2843. [Google Scholar]
- Bhawanjali, S.; Revathi, A.; Popat, K.C.; Geetha, M. Surface modification of Ti-13Nb-13Zr and Ti-6Al-4V using electrophoretic deposition (EPD) for enhanced cellular interaction. Mater. Technol. 2014, 29, B54–B58. [Google Scholar] [CrossRef]
- Igarashi, K.; Afrashehfar, K.I. Clinical assessment of fractured implant abutment screws: The Bernese silicone replica technique. J. Prosthet. Dent. 2018, 119, 717–719. [Google Scholar] [CrossRef]
- Long, W.J.; Nayyar, S.; Chen, K.K.; Novikov, D.; Davidovitch, R.I.; Vigdorchik, J.M. Early aseptic loosening of the Tritanium primary acetabular component with screw fixation. Arthroplast. Today 2018, 4, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, Y.; Trueba, P.; Pavón, J.; Chicardi, E.; Kamm, P.; García-Moreno, F.; Rodríguez-Ortiz, J. Design, processing and characterization of titanium with radial graded porosity for bone implants. Mater. Des. 2016, 110, 179–187. [Google Scholar] [CrossRef]
- Lu, G.; Sokol, D.W.; Zhang, Y.; Dulaney, J.L. Nanosecond pulsed laser-generated stress effect inducing macro-micro-nano structures and surface topography evolution. Appl. Mater. Today 2019, 15, 171–184. [Google Scholar] [CrossRef]
- Zhu, K.; Li, Z.; Fan, G.; Jiang, C. Effect of Multiple Shot Peening on Residual Stress and Microstructure of CNT/Al−Mg−Si Alloy Composite. Metals 2022, 12, 1412. [Google Scholar] [CrossRef]
- Huo, L.X.; Wang, D.; Zhang, Y.F.; Chen, J.M. Investigation on Improving Fatigue Properties of Welded Joints by Ultrasonic Peening Method. Key Eng. Mater. 2000, 183–187, 1315–1320. [Google Scholar] [CrossRef]
- Geng, J.L.; Yan, Z.F.; Zhang, H.X.; Dong, P. Effect of Ultrasonic Surface Rolling Process on Microstructure and Properties of AZ31B Magnesium Alloy. Surf. Technol. 2022, 51, 368–375. [Google Scholar]
- Hayashi, M.; Okido, S.; Suzuki, H. Residual Stress Distribution in Water Jet Peened Type 304 Stainless Steel. Quantum Beam Sci. 2020, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Amanov, A.; Umarov, R. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of Inconel 690 alloy. Appl. Surf. Sci. 2018, 441, 515–529. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, W.; Shao, Y.; Luo, K.; Lu, J. Cavitation erosion behaviour of AISI 420 stainless steel subjected to laser shock peening as a function of the coverage layer in distilled water and water-particle solutions. Wear 2021, 470–471, 203611. [Google Scholar] [CrossRef]
- Zhou, L.C.; He, W.F. Gradient Microstructure in Laser Shock Peened Materials: Fundamentals and Applications; Zhejiang University Press: Hangzhou, China, 2021. [Google Scholar]
- Wu, J.-J.; Huang, Z.; Qiao, H.-C.; Wei, B.-X.; Zhao, Y.-J.; Li, J.-F.; Zhao, J.-B. Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network. J. Cent. South Univ. 2022, 29, 3346–3360. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, J.Q.; Huang, T.; Xiao, R.S. Effect of Absorption Layer on Femtosecond Laser Shock Peening of Copper Foil. Surf. Technol. 2021, 50, 174–180. [Google Scholar]
- Tian, Z.; He, W.F.; Zhou, L.C.; Wang, Y.Z.; Luo, S.H.; Jiang, N.; Zhang, L.S.Y. Effect of Laser Shock Peening on Fatigue Strength of TC4 Titanium Alloy Notched Blade. Surf. Technol. 2022, 51, 30–37. [Google Scholar]
- Zhou, R.; Zhang, Z.; Hong, M.H. The art of laser ablation in aeroengine: The crown jewel of modern industry. J. Appl. Phys. 2020, 127, 090902. [Google Scholar]
- Guo, W.; Sun, R.; Song, B.; Zhu, Y.; Li, F.; Che, Z.; Li, B.; Guo, C.; Liu, L.; Peng, P. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy. Surf. Coat. Technol. 2018, 349, 503–510. [Google Scholar] [CrossRef]
- Dai, F.; Pei, Z.; Ren, X.; Huang, S.; Hua, X.; Chen, X. Effects of different contact film thicknesses on the surface roughness evolution of LY2 aluminum alloy milled surface subjected to laser shock wave planishing. Surf. Coat. Technol. 2020, 403, 126391. [Google Scholar] [CrossRef]
- Praveen, T.; Nayaka, H.S.; Swaroop, S.; Gopi, K. Strength enhancement of magnesium alloy through equal channel angular pressing and laser shock peening. Appl. Surf. Sci. 2020, 512, 145755. [Google Scholar] [CrossRef]
- Xu, S.; Su, B.Y.; Hua, G.R.; Wang, H.; Cao, Y.P. Effect of Laser Shock Peening on the Interfacial Bonding Properties of TiN Coatings on TC4 Titanium Alloy. Surf. Technol. 2022, 51, 315–325. [Google Scholar]
- Li, Y.H. The Theory and Technology of Laser Shock Processing; Science Press: Beijing, China, 2013. [Google Scholar]
- Shen, X.; Shukla, P.; Swanson, P.; An, Z.; Prabhakaran, S.; Waugh, D.; Nie, X.; Mee, C.; Nakhodchi, S.; Lawrence, J. Altering the wetting properties of orthopaedic titanium alloy (Ti–6Al–7Nb) using laser shock peening. J. Alloy. Compd. 2019, 801, 327–342. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, J.Z.; Sheng, J.; Zhu, W.; Zhong, H.; Mei, Y.F. Effect of Laser Shock Processing on Friction and Wear Properties of Ti13Nb13Zr Alloy. Rare Met. Mater. Eng. 2014, 43, 3154–3158. [Google Scholar]
- Guo, Y.; Sealy, M.P.; Guo, C. Significant improvement of corrosion resistance of biodegradable metallic implants processed by laser shock peening. CIRP Ann. 2012, 61, 583–586. [Google Scholar] [CrossRef]
- Tęczar, P.; Majkowska-Marzec, B.; Bartmański, M. The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties. Adv. Mater. Sci. 2019, 19, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhao, J.; Qiao, H.; Lu, Y.; Sun, B.; Hu, X.; Yang, Y. A method to determine the material constitutive model parameters of FGH4095 alloy treated by laser shock processing. Appl. Surf. Sci. Adv. 2020, 1, 100029. [Google Scholar] [CrossRef]
- Wei, B.; Xu, J.; Gao, L.; Feng, H.; Wu, J.; Sun, C.; Ke, W. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface mi-crohardness and microbial corrosion resistance. J. Mater. Sci. Technol. 2022, 107, 111–123. [Google Scholar] [CrossRef]
- Ma, C.-H.; Huang, J.-H.; Chen, H. Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Film. 2002, 418, 73–78. [Google Scholar] [CrossRef]
- Dhakal, B.; Swaroop, S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy. J. Mater. Process. Technol. 2020, 282, 116640. [Google Scholar] [CrossRef]
- Turnbull, A.; Crocker, L.; Zhou, S. Do corrosion pits eliminate the benefit of shot-peening? Int. J. Fatigue 2018, 116, 439–447. [Google Scholar] [CrossRef]
- Lu, J.; Wu, L.; Sun, G.; Luo, K.; Zhang, Y.; Cai, J.; Cui, C.; Luo, X. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017, 127, 252–266. [Google Scholar] [CrossRef]
- Lu, H.F.; Xue, K.N.; Xu, X.; Luo, K.Y.; Xing, F.; Yao, J.H.; Lu, J.Z. Effects of laser shock peening on microstructural evolution and wear property of laser hybrid remanufactured Ni25/Fe104 coating on H13 tool steel. J. Mater. Process. Technol. 2021, 291, 117016. [Google Scholar] [CrossRef]
Element | Ti | Nb | Zr | C | Fe | N | O | H | S |
---|---|---|---|---|---|---|---|---|---|
Wt% | Bal. | 13.18 | 13.49 | 0.035 | 0.085 | 0.019 | 0.078 | 0.055 | <0.001 |
Technical Parameters | Values |
---|---|
Working medium | Nd:YAG |
Wavelength | 1.064 μm |
Laser energy | 2–20 J |
Working frequency | 0–5 Hz |
Pulse width (FWHM) | 10 ns–15 ns |
Shape of laser beam spot | Circle (roundness >95%) |
Initial output spot diameter | 32 mm |
Laser beam profile | Three dimensional flat-top distribution |
ASE energy | <20 mJ |
Measurement Parameters | Value |
---|---|
X-ray tube | Cu_K-Alpha |
Diffraction plane | hkl-311 |
Working voltage | 25 KV |
Electric current | 20 mA |
Oscillation angle | ±5° |
Wavelength | 1.5418380 Å |
Exposure duration | 1 s |
Exposure times | 10 s |
Peak position determination method | Half-maximum intensity |
Irradiation spot diameter | 2 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Lin, X.; Qiao, H.; Zhao, J.; Ding, W.; Zhu, R. Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing. Materials 2023, 16, 238. https://doi.org/10.3390/ma16010238
Wu J, Lin X, Qiao H, Zhao J, Ding W, Zhu R. Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing. Materials. 2023; 16(1):238. https://doi.org/10.3390/ma16010238
Chicago/Turabian StyleWu, Jiajun, Xingze Lin, Hongchao Qiao, Jibin Zhao, Wangwang Ding, and Ran Zhu. 2023. "Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing" Materials 16, no. 1: 238. https://doi.org/10.3390/ma16010238
APA StyleWu, J., Lin, X., Qiao, H., Zhao, J., Ding, W., & Zhu, R. (2023). Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing. Materials, 16(1), 238. https://doi.org/10.3390/ma16010238