Effects of Solvent Additive and Micro-Patterned Substrate on the Properties of Thin Films Based on P3HT:PC70BM Blends Deposited by MAPLE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Photovoltaic Cell Structures on Flat and Micro-Patterned Glass Substrates
2.1.1. Micro-Patterning Substrates by UV-NIL
2.1.2. Transparent Electrode Deposition by Pulsed Laser Deposition (PLD)
2.1.3. Active Layer Deposition by MAPLE
2.1.4. Top Metallic Electrode Deposition by Vacuum Thermal Evaporation (VTE)
2.2. Characterization Techniques
2.2.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.2. Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (SEM)
2.2.3. Spectroscopic Ellipsometry Measurements
2.2.4. UV-VIS and Photoluminescence (PL) Spectroscopy Measurements
2.2.5. Current Density-Voltage (J-V) and External Quantum Efficiency (EQE) Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, J.J. Recently-explored top electrode materials for transparent organic solar cells. Synth. Met. 2021, 271, 116582. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovoltaics Res. Appl. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Frisk, C.; Platzer-Björkman, C.; Olsson, J.; Szaniawski, P.; Wätjen, J.T.; Fjällström, V.; Salomé, P.; Edoff, M. Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models. J. Phys. D. Appl. Phys. 2014, 47, 485104. [Google Scholar] [CrossRef] [Green Version]
- Furue, S.; Ishizuka, S.; Yamada, A.; Iioka, M.; Higuchi, H.; Shibata, H.; Niki, S. Cu(In,Ga)Se2 solar cells and mini-modules fabricated on thin soda-lime glass substrates. Sol. Energy Mater. Sol. Cells 2013, 119, 163–168. [Google Scholar] [CrossRef]
- Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N. Concrete embedded dye-synthesized photovoltaic solar cell. Sci. Rep. 2013, 3, 2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bett, A.W.; Dimroth, F.; Stollwerck, G.; Sulima, O.V. III-V compounds for solar cell applications. Appl. Phys. A Mater. Sci. Process. 1999, 69, 119–129. [Google Scholar] [CrossRef]
- Holliday, S.; Ashraf, R.S.; Wadsworth, A.; Baran, D.; Yousaf, S.A.; Nielsen, C.B.; Tan, C.H.; Dimitrov, S.D.; Shang, Z.; Gasparini, N.; et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 2016, 7, 11585. [Google Scholar] [CrossRef] [Green Version]
- Usmani, B.; Ranjan, R.; Prateek; Gupta, S.K.; Gupta, R.K.; Nalwa, K.S.; Garg, A. Inverted PTB7-Th:PC71BM organic solar cells with 11.8% PCE via incorporation of gold nanoparticles in ZnO electron transport layer. Sol. Energy 2021, 214, 220–230. [Google Scholar] [CrossRef]
- Uddin, S.I.; Tahir, M.; Aziz, F.; Sarker, M.R.; Muhammad, F.; Khan, D.N.; Md Ali, S.H. Thickness optimization and photovoltaic properties of bulk heterojunction solar cells based on pfb–pcbm layer. Energies 2020, 13, 5915. [Google Scholar] [CrossRef]
- Wang, J.; Zardetto, V.; Datta, K.; Zhang, D.; Wienk, M.M.; Janssen, R.A.J. 16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nat. Commun. 2020, 11, 5254. [Google Scholar] [CrossRef]
- Zheng, L.; Xuan, Y.; Wang, J.; Bao, S.; Liu, X.; Zhang, K. Inverted perovskite/silicon V-shaped tandem solar cells with 27.6% efficiency via self-assembled monolayer-modified nickel oxide layer. J. Mater. Chem. A 2022, 10, 7251–7262. [Google Scholar] [CrossRef]
- Tahir, M.; Din, I.U.; Zeb, M.; Aziz, F.; Wahab, F.; Gul, Z.; Alamgeer; Sarker, M.R.; Ali, S.; Ali, S.H.M.; et al. Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings 2022, 12, 1163. [Google Scholar] [CrossRef]
- Wang, D.; Liu, H.; Li, Y.; Zhou, G.; Zhan, L.; Zhu, H.; Lu, X.; Chen, H.; Li, C.Z. High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 2021, 5, 945–957. [Google Scholar] [CrossRef]
- Güler, E.N.; Distler, A.; Basu, R.; Brabec, C.J. Fully solution-processed, light-weight, and ultraflexible organic solar cells. Flex. Print. Electron. 2022, 7, 025003. [Google Scholar] [CrossRef]
- Colsmann, A.; Röhm, H.; Sprau, C. Shining Light on Organic Solar Cells. Sol. RRL 2020, 4, 2000015. [Google Scholar] [CrossRef] [Green Version]
- Berny, S.; Blouin, N.; Distler, A.; Egelhaaf, H.J.; Krompiec, M.; Lohr, A.; Lozman, O.R.; Morse, G.E.; Nanson, L.; Pron, A.; et al. Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 2015, 3, 1500342. [Google Scholar] [CrossRef]
- Sun, C.; Xia, R.; Shi, H.; Yao, H.; Liu, X.; Hou, J.; Huang, F.; Yip, H.L.; Cao, Y. Heat-Insulating Multifunctional Semitransparent Polymer Solar Cells. Joule 2018, 2, 1816–1826. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Xia, R.; Zhang, G.; Yip, H.L.; Cao, Y. Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications. Adv. Energy Mater. 2019, 9, 1803438. [Google Scholar] [CrossRef]
- Needell, D.R.; Phelan, M.E.; Hartlove, J.T.; Atwater, H.A. Solar power windows: Connecting scientific advances to market signals. Energy 2021, 219, 119567. [Google Scholar] [CrossRef]
- Glogic, E.; Weyand, S.; Tsang, M.P.; Young, S.B.; Schebek, L.; Sonnemann, G. Life cycle assessment of organic photovoltaic charger use in Europe: The role of product use intensity and irradiation. J. Clean. Prod. 2019, 233, 1088–1096. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, J.; Isabella, O.; Santbergen, R.; Tan, H.; Zeman, M.; Zhang, G. A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting. Appl. Energy 2018, 228, 1454–1472. [Google Scholar] [CrossRef]
- Duvva, N.; Raptis, D.; Kumar, C.V.; Koukaras, E.N.; Giribabu, L.; Lianos, P. Design of diketopyrrolopyrrole chromophores applicable as sensitizers in dye-sensitized photovoltaic windows for green houses. Dye. Pigment. 2016, 134, 472–479. [Google Scholar] [CrossRef]
- Landerer, D.; Mertens, A.; Freis, D.; Droll, R.; Leonhard, T.; Schulz, A.D.; Bahro, D.; Colsmann, A. Enhanced thermal stability of organic solar cells comprising ternary D-D-A bulk-heterojunctions. npj Flex. Electron. 2017, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Xing, Y. Improved performance of small molecule organic solar cells by incorporation of a glancing angle deposited donor layer. Sci. Rep. 2020, 10, 5766. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Ishijima, N.; Sugime, H.; Noda, S. Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process. Sci. Rep. 2019, 9, 12051. [Google Scholar] [CrossRef] [Green Version]
- Shalev, G.; Schmitt, S.W.; Embrechts, H.; Brönstrup, G.; Christiansen, S. Enhanced photovoltaics inspired by the fovea centralis. Sci. Rep. 2015, 5, 8570. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhou, L.; Liu, W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W.; Xu, S.; Fan, H.; et al. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. Adv. Mater. 2021, 33, 2100830. [Google Scholar] [CrossRef]
- Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855. [Google Scholar] [CrossRef]
- Yun, M.J.; Sim, Y.H.; Cha, S.I.; Seo, S.H.; Lee, D.Y. High Energy Conversion Efficiency with 3-D Micro-Patterned Photoanode for Enhancement Diffusivity and Modification of Photon Distribution in Dye-Sensitized Solar Cells. Sci. Rep. 2017, 7, 15027. [Google Scholar] [CrossRef]
- Li, C.; Gu, X.; Chen, Z.; Han, X.; Yu, N.; Wei, Y.; Gao, J.; Chen, H.; Zhang, M.; Wang, A.; et al. Achieving Record-Efficiency Organic Solar Cells upon Tuning the Conformation of Solid Additives. J. Am. Chem. Soc. 2022, 144, 14731–14739. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ryu, H.S.; Han, L.; Cai, Y.; Duan, X.; Wei, D.; Woo, H.Y.; Sun, Y. High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Sci. China Chem. 2021, 64, 2161–2168. [Google Scholar] [CrossRef]
- Bernède, J.C.; Cattin, L.; Morsli, M.; Kanth, S.R.B.; Patil, S.; Stephant, N. Improvement of the efficiency of organic solar cells using the terthiophene-pyran-malononitrile (T3PM) as electron donor, through the use of a MoO3/CuI anode buffer layer. Energy Procedia 2012, 31, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Liu, J.; Liu, Y.; Xu, X.; Bo, Z. Improving the Efficiency of Organic Solar Cells by Introducing Perylene Diimide Derivative as Third Component and Individually Dissolving Donor/Acceptor. ChemSusChem 2021, 14, 5442–5449. [Google Scholar] [CrossRef]
- Choi, J.H.; Choi, H.J.; Shin, J.H.; Kim, H.P.; Jang, J.; Lee, H. Enhancement of organic solar cell efficiency by patterning the PEDOT:PSS hole transport layer using nanoimprint lithography. Org. Electron. 2013, 14, 3180–3185. [Google Scholar] [CrossRef]
- Yu, H.; Li, Y.; Dong, Y.; Huang, X. Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System. Int. J. Photoenergy 2016, 2016, 6725106. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kong, J.; Lee, K. Air-Stable Organic Solar Cells Using an Iodine-Free Solvent Additive. Adv. Energy Mater. 2016, 6, 1600970. [Google Scholar] [CrossRef]
- Wang, T.; Scarratt, N.W.; Yi, H.; Dunbar, A.D.F.; Pearson, A.J.; Watters, D.C.; Glen, T.S.; Brook, A.C.; Kingsley, J.; Buckley, A.R.; et al. Fabricating high performance, donor-acceptor copolymer solar cells by spray-coating in air. Adv. Energy Mater. 2013, 3, 505–512. [Google Scholar] [CrossRef]
- Vohra, V.; Razali, N.T.; Wahi, R.; Ganzer, L.; Virgili, T. A comparative study of low-cost coating processes for green & sustainable organic solar cell active layer manufacturing. Opt. Mater. X 2022, 13, 100127. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Yuan, J.; Lin, B.; Xing, Z.; Meng, X.; Ke, L.; Hu, X.; Ma, W.; Yuan, Y. Blade-coated efficient and stable large-area organic solar cells with optimized additive. Org. Electron. 2020, 83, 105771. [Google Scholar] [CrossRef]
- Amruth, C.; Dubey, D.K.; Pahlevani, M.; Welch, G.C. Slot-Die Coating of All Organic/Polymer Layers for Large-Area Flexible OLEDs: Improved Device Performance with Interlayer Modification. Adv. Mater. Technol. 2021, 6, 2100264. [Google Scholar] [CrossRef]
- Wienhold, K.S.; Körstgens, V.; Grott, S.; Jiang, X.; Schwartzkopf, M.; Roth, S.V.; Müller-Buschbaum, P. Effect of Solvent Additives on the Morphology and Device Performance of Printed Nonfullerene Acceptor Based Organic Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 42313–42321. [Google Scholar] [CrossRef] [PubMed]
- Caricato, A.P.; Cesaria, M.; Gigli, G.; Loiudice, A.; Luches, A.; Martino, M.; Resta, V.; Rizzo, A.; Taurino, A. Poly-(3-hexylthiophene)/[6,6]-phenyl-C 61-butyric-acid-methyl- ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications. Appl. Phys. Lett. 2012, 100, 073306. [Google Scholar] [CrossRef]
- Caricato, A.P. MAPLE and MALDI: Theory and Experiments. Lasers in Materials Science; Castillrjo, M., Ossi, P., Zhigilei, L., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 191, pp. 295–323. ISBN 9783319028989. [Google Scholar]
- Socol, M.; Preda, N.; Socol, G. Organic thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE) for photovoltaic cell applications: A review. Coatings 2021, 11, 1368. [Google Scholar] [CrossRef]
- Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 2015, 3, 10715–10722. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wang, C.; Russell, T.P. Multi-length-scale morphologies in PCPDTBT/PCBM bulk-heterojunction solar cells. Adv. Energy Mater. 2012, 2, 683–690. [Google Scholar] [CrossRef]
- McDowell, C.; Abdelsamie, M.; Toney, M.F.; Bazan, G.C. Solvent Additives: Key Morphology-Directing Agents for Solution-Processed Organic Solar Cells. Adv. Mater. 2018, 30, e1707114. [Google Scholar] [CrossRef]
- Chang, S.Y.; Liao, H.C.; Shao, Y.T.; Sung, Y.M.; Hsu, S.H.; Ho, C.C.; Su, W.F.; Chen, Y.F. Enhancing the efficiency of low bandgap conducting polymer bulk heterojunction solar cells using P3HT as a morphology control agent. J. Mater. Chem. A 2013, 1, 2447–2452. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027. [Google Scholar] [CrossRef]
- Kwon, S.; Kang, H.; Lee, J.H.; Lee, J.; Hong, S.; Kim, H.; Lee, K. Effect of Processing Additives on Organic Photovoltaics: Recent Progress and Future Prospects. Adv. Energy Mater. 2017, 7, 1601496. [Google Scholar] [CrossRef]
- Fontana, M.T.; Kang, H.; Yee, P.Y.; Fan, Z.; Hawks, S.A.; Schelhas, L.T.; Subramaniyan, S.; Hwang, Y.J.; Jenekhe, S.A.; Tolbert, S.H.; et al. Low-Vapor-Pressure Solvent Additives Function as Polymer Swelling Agents in Bulk Heterojunction Organic Photovoltaics. J. Phys. Chem. C 2018, 122, 16574–16588. [Google Scholar] [CrossRef]
- Otieno, F.; Kotane, L.; Airo, M.; Erasmus, R.M.; Billing, C.; Wamwangi, D.; Billing, D.G. Comparative Investigation of Fullerene PC71BM and Non-fullerene ITIC-Th Acceptors Blended With P3HT or PBDB-T Donor Polymers for PV Applications. Front. Energy Res. 2021, 9, 162. [Google Scholar] [CrossRef]
- Collins, B.A.; Li, Z.; Tumbleston, J.R.; Gann, E.; Mcneill, C.R.; Ade, H. Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71bm solar cells. Adv. Energy Mater. 2013, 3, 65–74. [Google Scholar] [CrossRef]
- Zang, Y.; Xin, Q.; Zhao, J.; Lin, J. Effect of Active Layer Thickness on the Performance of Polymer Solar Cells Based on a Highly Efficient Donor Material of PTB7-Th. J. Phys. Chem. C 2018, 122, 16532–16539. [Google Scholar] [CrossRef]
- Liu, Y.; Kirsch, C.; Gadisa, A.; Aryal, M.; Mitran, S.; Samulski, E.T.; Lopez, R. Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices. J. Phys. D. Appl. Phys. 2012, 46, 24008. [Google Scholar] [CrossRef] [Green Version]
- Phengdaam, A.; Nootchanat, S.; Ishikawa, R.; Lertvachirapaiboon, C.; Shinbo, K.; Kato, K.; Ekgasit, S.; Baba, A. Improvement of organic solar cell performance by multiple plasmonic excitations using mixed-silver nanoprisms. J. Sci. Adv. Mater. Devices 2021, 6, 264–270. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Fang, J.; Li, W.; Shen, Y.; De Chen, J.; Li, Y.; Gu, H.; Pelivani, S.; Zhang, M.; Li, Y.; et al. Synergetic Transparent Electrode Architecture for Efficient Non-Fullerene Flexible Organic Solar Cells with >12% Efficiency. ACS Nano 2019, 13, 4686–4694. [Google Scholar] [CrossRef]
- Suleimanov, S.K.; Berger, P.; Dyskin, V.G.; Dzhanklich, M.U.; Bugakov, A.G.; Dudko, O.A.; Kulagina, N.A.; Kim, M. Antireflection composite coatings for organic solar cells. Appl. Sol. Energy (English Transl. Geliotekhnika) 2016, 52, 157–158. [Google Scholar] [CrossRef]
- Thanner, C.; Eibelhuber, M. UV nanoimprint lithography: Geometrical impact on filling properties of nanoscale patterns. Nanomaterials 2021, 11, 822. [Google Scholar] [CrossRef]
- Mao, H.; Zhang, L.; Wen, L.; Huang, L.; Tan, L.; Chen, Y. Nanoimprint Lithography-Dependent Vertical Composition Gradient in Pseudo-Planar Heterojunction Organic Solar Cells Combined with Sequential Deposition. Adv. Funct. Mater. 2022, 2209152. [Google Scholar] [CrossRef]
- He, X.; Gao, F.; Tu, G.; Hasko, D.G.; Hüttner, S.; Greenham, N.C.; Steiner, U.; Friend, R.H.; Huck, W.T.S. Formation of well-ordered heterojunctions in polymer:PCBM photovoltaic devices. Adv. Funct. Mater. 2011, 21, 139–146. [Google Scholar] [CrossRef]
- Kang, M.G.; Kim, M.S.; Kim, J.; Guo, L.J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413. [Google Scholar] [CrossRef] [Green Version]
- Isegawa, T.; Okamoto, T.; Kondo, M.; Katsumata, S.; Kubo, W. P3HT:PC61BM solar cell embedding silver nanostripes for light absorption enhancement. Opt. Commun. 2019, 441, 21–25. [Google Scholar] [CrossRef]
- Călugăr, A.I.R.; Antohe, V.A.; Iftimie, S.; Radu, A.; Filipescu, M.; Ion, L.; Dinescu, M.; Antohe, Ş. On the physical and photo-electrical properties of organic photovoltaic cells based on 1,10-Phenanthroline and 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine non-fullerene thin films. Appl. Surf. Sci. 2020, 531, 147332. [Google Scholar] [CrossRef]
- Berger, P.R.; Kim, M. Polymer solar cells: P3HT:PCBM and beyond. J. Renew. Sustain. Energy 2018, 10, 013508. [Google Scholar] [CrossRef]
- He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, S.L.; Chen, Y.; Zhang, J.; Yang, Q.Q.; Gong, W.; Yuan, M.Y.; Xu, Z.; Xu, X.R. Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent. Chinese Phys. B 2015, 24. [Google Scholar] [CrossRef]
- Xu, B.; Sai-Anand, G.; Unni, G.E.; Jeong, H.M.; Kim, J.S.; Kim, S.W.; Kwon, J.B.; Bae, J.H.; Kang, S.W. Pyridine-based additive optimized P3HT:PC61BM nanomorphology for improved performance and stability in polymer solar cells. Appl. Surf. Sci. 2019, 484, 825–834. [Google Scholar] [CrossRef]
- Zhang, F.; Zhuo, Z.; Zhang, J.; Wang, X.; Xu, X.; Wang, Z.; Xin, Y.; Wang, J.; Wang, J.; Tang, W.; et al. Influence of PC60BM or PC70BM as electron acceptor on the performance of polymer solar cells. Sol. Energy Mater. Sol. Cells 2012, 97, 71–77. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Petre, G.; Costas, A.; Rasoga, O.; Popescu-Pelin, G.; Mihailescu, A.; Stanculescu, A.; Socol, G. MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine. Coatings 2020, 10, 956. [Google Scholar] [CrossRef]
- Nogimura, A.; Akaike, K.; Nakanishi, R.; Eguchi, R.; Kanai, K. Electronic structure and surface morphology of [6,6]-phenyl-C 71-butyric acid methyl ester films. Org. Electron. 2013, 14, 3222–3227. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Shih, K.Y.; Peng, Y.C.; Chiu, Y.C.; Kuo, C.C.; Yang, C.C.; Chen, C.P. High-efficiency organic photovoltaic cells processed using a non-halogen solvent. Mater. Chem. Phys. 2022, 282, 125971. [Google Scholar] [CrossRef]
- Rasoga, O.; Thanner, C.; Semenova, O.; Avram, A.M.; Jinga, L. Wafer-level fabrication of nanocones structures by UV-nanoimprint and cryogenic deep reactive ion process. In Proceedings of the 2021 International Semiconductor Conference (CAS), Romania, 6–8 October 2021; pp. 39–42. [Google Scholar]
- Socol, M.; Preda, N.; Rasoga, O.; Costas, A.; Stanculescu, A.; Breazu, C.; Gherendi, F.; Socol, G. Pulsed laser deposition of indium tin oxide thin films on nanopatterned glass substrates. Coatings 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Breazu, C.; Socol, M.; Preda, N.; Rasoga, O.; Costas, A.; Socol, G.; Petre, G.; Stanculescu, A. Nucleobases thin films deposited on nanostructured transparent conductive electrodes for optoelectronic applications. Sci. Rep. 2021, 11, 7551. [Google Scholar] [CrossRef] [PubMed]
- Mkawi, E.M.; Al-Hadeethi, Y.; Bazuhair, R.S.; Yousef, A.S.; Shalaan, E.; Arkook, B.; Abdeldaiem, A.M.; Almalki, R.; Bekyarova, E. Optimization of Sb2S3 nanocrystal concentrations in P3HT: PCBM layers to improve the performance of polymer solar cells. Polymers 2021, 13, 2152. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, L.; Tommasini, M.; Botiz, I.; Rahimi, K.; Agumba, J.O.; Stingelin, N.; Zerbi, G. Regio-regular oligo and poly(3-hexyl thiophene): Precise structural markers from the vibrational spectra of oligomer single crystals. Macromolecules 2014, 47, 6730–6739. [Google Scholar] [CrossRef]
- Brambilla, L.; Capel Ferrón, C.; Tommasini, M.; Hong, K.; López Navarrete, J.T.; Hernández, V.; Zerbi, G. Infrared and multi-wavelength Raman spectroscopy of regio-regular P3HT and its deutero derivatives. J. Raman Spectrosc. 2018, 49, 569–580. [Google Scholar] [CrossRef]
- Blazinic, V.; Ericsson, L.K.E.; Muntean, S.A.; Moons, E. Photo-degradation in air of spin-coated PC60BM and PC70BM films. Synth. Met. 2018, 241, 26–30. [Google Scholar] [CrossRef]
- Yue, G.T.; Wu, J.H.; Xiao, Y.M.; Ye, H.F.; Lin, J.M.; Huang, M.L. Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chinese Sci. Bull. 2011, 56, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Kalonga, G. Characterization and optimization of poly (3-hexylthiophene-2, 5- diyl) (P3HT) and [6, 6] phenyl-C61-butyric acid methyl ester (PCBM) blends for optical absorption. J. Chem. Eng. Mater. Sci. 2013, 4, 93–102. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Stanculescu, F.; Iftimie, S.; Girtan, M.; Popescu-Pelin, G.; Socol, G. Organic heterostructures deposited by MAPLE on AZO substrate. Appl. Surf. Sci. 2017, 417, 196–203. [Google Scholar] [CrossRef]
- Shrotriya, V.; Ouyang, J.; Tseng, R.J.; Li, G.; Yang, Y. Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films. Chem. Phys. Lett. 2005, 411, 138–143. [Google Scholar] [CrossRef]
- Molefe, F.V.; Khenfouch, M.; Dhlamini, M.S.; Mothudi, B.M. Spectroscopic investigation of charge and energy transfer in P3HT/GO nanocomposite for solar cell applications. Adv. Mater. Lett. 2017, 8, 246–250. [Google Scholar] [CrossRef]
- Tlahuice-Flores, A.; Mejia-Rosales, S. Structural and Vibrational Study of PCBM. J. Chem. Chem. Eng. 2011, 5, 1034–1040. [Google Scholar] [CrossRef]
- Wang, C.; Gann, E.; Chesman, A.S.R.; McNeill, C.R. Residual solvent additive enables the nanostructuring of PTB7-Th:PC71BM solar cells via soft lithography. AIP Adv. 2019, 9, 065024. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Lee, K.; Coates, N.E.; Moses, D.; Nguyen, T.; Dante, M.; Heeger, A.J. Fabricated by All-Solution Processing. Science (80-. ). 2007, 317, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Supriyanto, A.; Mustaqim, A.; Agustin, M.; Ramelan, A.H.; Suyitno; Rosa, E.S.; Yofentina; Nurosyid, F. Fabrication of organic solar cells with design blend P3HT: PCBM variation of mass ratio. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012050. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, H.; Parra, M.R.; Pandey, P.; Qureshi, M.S.; Haque, F.Z. Combined parametric optimization of P3HT: PC70BM films for efficient bulk-heterojunction solar cells. J. Solid State Electrochem. 2019, 23, 3267–3274. [Google Scholar] [CrossRef]
- Sibley, S.P.; Argentine, S.M.; Francis, A.H. A photoluminescence study of C60 and C70. Chem. Phys. Lett. 1992, 188, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Zakhidov, E.; Imomov, M.; Quvondikov, V.; Nematov, S.; Tajibaev, I.; Saparbaev, A.; Ismail, I.; Shahid, B.; Yang, R. Comparative study of absorption and photoluminescent properties of organic solar cells based on P3HT:PCBM and P3HT:ITIC blends. Appl. Phys. A Mater. Sci. Process. 2019, 125, 803. [Google Scholar] [CrossRef]
- Griffin, J.; Pearson, A.J.; Scarratt, N.W.; Wang, T.; Dunbar, A.D.F.; Yi, H.; Iraqi, A.; Buckley, A.R.; Lidzey, D.G. Organic photovoltaic devices with enhanced efficiency processed from non-halogenated binary solvent blends. Org. Electron. 2015, 21, 216–222. [Google Scholar] [CrossRef]
Target | Solution Composition | |
---|---|---|
P3HT:PC70BM Ratio | DIO Ratio in Toluene | |
1 | 1:0.7 wt. | 0% |
2 | 1:0.7 wt. | 0.3% |
3 | 1:1 wt. | 0% |
4 | 1:1 wt. | 0.3% |
5 | 0.7:1 wt. | 0% |
6 | 0.7:1 wt. | 0.3% |
Solution Composition | Deposition Type | Substrate Type | Structure | Sample Label |
---|---|---|---|---|
1 | Drop-cast | silicon | P3HT:PC70BM (1:0.7)/Si | D1 |
MAPLE | silicon | P3HT:PC70BM (1:0.7)/Si | M1 | |
glass | P3HT:PC70BM (1:0.7)/glass | G1 | ||
ITO * | P3HT:PC70BM (1:0.7)/ITO | I1 | ||
ITO nano # | P3HT:PC70BM (1:0.7)/Micro-patterned ITO | I1nano | ||
2 (with DIO) | Drop-cast | silicon | P3HT:PC70BM (1:0.7)/Si | D2 |
MAPLE | silicon | P3HT:PC70BM (1:0.7)/Si | M2 | |
glass | P3HT:PC70BM (1:0.7)/glass | G2 | ||
ITO * | P3HT:PC70BM (1:0.7)/ITO | I2 | ||
ITO nano # | P3HT:PC70BM (1:0.7)/Micro-patterned ITO | I2nano | ||
3 | Drop-cast | silicon | P3HT:PC70BM (1:1)/Si | D3 |
MAPLE | silicon | P3HT:PC70BM (1:1)/Si | M3 | |
glass | P3HT:PC70BM (1:1)/glass | G3 | ||
ITO * | P3HT:PC70BM (1:1)/ITO | I3 | ||
ITO nano # | P3HT:PC70BM (1:1)/Micro-patterned ITO | I3nano | ||
4 (with DIO) | Drop-cast | silicon | P3HT:PC70BM (1:1)/Si | D4 |
MAPLE | silicon | P3HT:PC70BM (1:1)/Si | M4 | |
glass | P3HT:PC70BM (1:1)/glass | G4 | ||
ITO * | P3HT:PC70BM (1:1)/ITO | I4 | ||
ITO nano # | P3HT:PC70BM (1:1)/Micro-patterned ITO | I4nano | ||
5 | Drop-cast | silicon | P3HT:PC70BM (0.7:1)/Si | D5 |
MAPLE | silicon | P3HT:PC70BM (0.7:1)/Si | M5 | |
glass | P3HT:PC70BM (0.7:1)/glass | G5 | ||
ITO * | P3HT:PC70BM (0.7:1)/ITO | I5 | ||
ITO nano # | P3HT:PC70BM (0.7:1)/Micro-patterned ITO | I5nano | ||
6 (with DIO) | Drop-cast | silicon | P3HT:PC70BM (0.7:1)/Si | D6 |
MAPLE | silicon | P3HT:PC70BM (0.7:1)/Si | M6 | |
glass | P3HT:PC70BM (0.7:1)/glass | G6 | ||
ITO * | P3HT:PC70BM (0.7:1)/ITO | I6 | ||
ITO nano # | P3HT:PC70BM (0.7:1)/Micro-patterned ITO | I6nano |
Sample | Organic Layer | Thickness (nm) |
---|---|---|
Reference samples | P3HT | 83139 |
P3HT(DIO) | 456 | |
PC70BM | 947 | |
PC70BM(DIO) | 1110 | |
I1 | P3HT:PC70BM (1:0.7) | 381 |
I1nano | 471 | |
I2 | P3HT:PC70BM (1:0.7) with DIO | 325 |
I2nano | 1544 | |
I3 | P3HT:PC70BM (1:1) | 30727 |
I3nano | 1949 | |
I4 | P3HT:PC70BM (1:1) with DIO | 212 |
I4nano | 29123 | |
I5 | P3HT:PC70BM (0.7:1) | 3729 |
I5nano | 25512 | |
I6 | P3HT:PC70BM (0.7:1) with DIO | 22621 |
I6nano | 132 ± 11 |
Sample | RMS (nm) | Ra (nm) |
---|---|---|
P3HT | 112 | 84 |
P3HT(DIO) | 105 | 70 |
PC70BM | 49 | 39 |
PC70BM(DIO) | 44 | 36 |
ITO | 1.5 | 1 |
ITOnano | 140 | 117 |
I2 | 85 | 55 |
I2nano | 231 | 190 |
I3 | 190 | 143 |
I3nano | 260 | 206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socol, M.; Preda, N.; Breazu, C.; Petre, G.; Stanculescu, A.; Stavarache, I.; Popescu-Pelin, G.; Stochioiu, A.; Socol, G.; Iftimie, S.; et al. Effects of Solvent Additive and Micro-Patterned Substrate on the Properties of Thin Films Based on P3HT:PC70BM Blends Deposited by MAPLE. Materials 2023, 16, 144. https://doi.org/10.3390/ma16010144
Socol M, Preda N, Breazu C, Petre G, Stanculescu A, Stavarache I, Popescu-Pelin G, Stochioiu A, Socol G, Iftimie S, et al. Effects of Solvent Additive and Micro-Patterned Substrate on the Properties of Thin Films Based on P3HT:PC70BM Blends Deposited by MAPLE. Materials. 2023; 16(1):144. https://doi.org/10.3390/ma16010144
Chicago/Turabian StyleSocol, Marcela, Nicoleta Preda, Carmen Breazu, Gabriela Petre, Anca Stanculescu, Ionel Stavarache, Gianina Popescu-Pelin, Andrei Stochioiu, Gabriel Socol, Sorina Iftimie, and et al. 2023. "Effects of Solvent Additive and Micro-Patterned Substrate on the Properties of Thin Films Based on P3HT:PC70BM Blends Deposited by MAPLE" Materials 16, no. 1: 144. https://doi.org/10.3390/ma16010144