Comparative Studies of the Dielectric Properties of Polyester Imide Composite Membranes Containing Hydrophilic and Hydrophobic Mesoporous Silica Particles
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Instrumentation
2.3. Synthesis of the Hydrophilic and Hydrophobic MSPs
2.4. Preparation of PEI Composite Membranes Containing Hydrophilic and Hydrophobic MSPs
3. Results and Discussion
3.1. Characterization of the Hydrophilic and Hydrophobic MSPs
3.1.1. FTIR Spectra
3.1.2. Solid-State 29Si-NMR Spectra
3.1.3. Solid-State 13C-NMR Spectra
3.1.4. Energy Dispersive Spectroscopy (EDS)
3.2. Physical Properties of MSPs
3.2.1. Surface Morphology of the Hydrophilic and Hydrophobic MSPs (SEM)
3.2.2. Transmission Morphology of the Hydrophilic and Hydrophobic MSPs (TEM)
3.2.3. Surface Wettability
3.2.4. Determination of the Moisture Absorption of the MSPs with TGA
3.2.5. BET Analysis of the MSPs
3.3. Characterization of the MSP-Based PEI Composite Membranes
3.3.1. ATR-FTIR Spectra
3.3.2. XRD Pattern
3.4. Physical Properties of MSP-Based PEI Composite Membranes
3.4.1. Dielectric Properties
3.4.2. Mechanical Strength
3.4.3. Moisture Absorption and Thermal Stability Determined with TGA
3.5. Discussion
Sample Code | D-(-)-Fructose | TEOS | APTES (-NH2) | MTMS (-CH3) | BET | CA | TGA@200 °C | EDS (Atomic%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | g | mmole | mmole | mmole | Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) | (°) | Moisture (%) | C | N | O | Si |
A1 | 5.2 | 27 | 22.6 | - | 469 ± 12 | 0.26 ± 0.02 | 2.9 ± 0.2 | - | 4.15 | 49.25 | 0.80 | 36.59 | 13.36 |
A2 | 5.2 | 27 | 45.2 | - | 402 ± 21 | 0.25 ± 0.02 | 3.0 ± 0.2 | - | 4.24 | 26.41 | 1.20 | 51.55 | 20.84 |
A3 | 5.2 | 27 | 90.4 | - | 384 ± 14 | 0.21 ± 0.01 | 2.7 ± 0.1 | - | 7.68 | 34.05 | 1.60 | 41.53 | 22.83 |
M1 | 5.2 | 9 | 0.45 | 18 | 548 ± 12 | 0.94 ± 0.02 | 4.9 ± 0.1 | 127.6 | 0.58 | - | - | - | - |
M2 | 7.2 | 9 | 0.45 | 18 | 771 ± 14 | 0.86 ± 0.01 | 6.2 ± 0.1 | 127.2 | 0.45 | - | - | - | - |
Sample Code | PEI | Silica | 10 GHz | Tensile Strength | Elongation at Break | T5d | Moisture (TGA@200 °C) | Contact Angle | FWHM | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TAHQ | APAB | |||||||||||
Unit | (mmole) | (mmole) | Code | (wt-%) | Dk | Df | MPa | % | °C | % | ° | |
PEI | 20 | 20 | - | - | 3.27 | 0.007 | 11.26 | 1.48 | 445.8 | 0.73 | 74.6 | 3.2 |
PEI-A1-1 | 20 | 20 | A1 | 1 | 3.43 | 0.011 | 4.03 | 2.15 | 453.8 | 0.95 | 83.7 | 3.4 |
PEI-A2-1 | 20 | 20 | A2 | 1 | 3.46 | 0.012 | 4.80 | 2.52 | 445.0 | 0.98 | 80.9 | 3.5 |
PEI-A3-1 | 20 | 20 | A3 | 1 | 3.92 | 0.015 | 5.48 | 2.75 | 443.9 | 1.18 | 61.5 | 3.5 |
PEI-M1-1 | 20 | 20 | M1 | 1 | 3.24 | 0.009 | - | - | 461.0 | 0.69 | 83.5 | 3.3 |
PEI-M2-0.5 | 20 | 20 | M2 | 0.5 | 3.24 | 0.007 | 15.91 | 1.37 | 424.8 | 0.61 | 81.1 | 3.3 |
PEI-M2-1 | 20 | 20 | M2 | 1 | 3.18 | 0.008 | 16.23 | 1.20 | 470.4 | 0.52 | 84.3 | 3.3 |
PEI-M2-2 | 20 | 20 | M2 | 2 | 2.97 | 0.008 | 18.95 | 1.19 | 486.6 | 0.38 | 88.5 | 3.4 |
PEI-M2-3 | 20 | 20 | M2 | 3 | 2.93 | 0.009 | 6.68 | 1.65 | 463.9 | 0.45 | 93.8 | 3.5 |
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wirel. Commun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- Farasat, M.; Thalakotuna, D.N.; Hu, Z.; Yang, Y. A review on 5G sub-6 GHz base station antenna design challenges. Electronics 2021, 10, 2000. [Google Scholar] [CrossRef]
- Tripathi, S.; Sabu, N.V.; Gupta, A.K.; Dhillon, H.S. Millimeter-Wave and Terahertz Spectrum for 6G Wireless. In 6G Mobile Wireless Networks; Springer: Cham, Switzerland, 2021; pp. 82–121. [Google Scholar] [CrossRef]
- Ikram, M.; Sultan, K.; Lateef, M.F.; Alqadami, A.S.M. A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices. Electronics 2022, 11, 169. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl. Sci. 2019, 9, 4367. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, R.; Novack, D. Realizing 5G: Microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 2015, 16, 84–92. [Google Scholar] [CrossRef]
- Duan, B.Y. Evolution and innovation of antenna systems for beyond 5G and 6G. Front. Inf. Technol. Electron. Eng. 2020, 21, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Liaw, D.J.; Wang, K.L.; Huang, Y.C.; Lee, K.R.; Lai, J.Y.; Ha, C.S. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Hao, Y.; Xiang, S.; Han, G.; Zhang, J.; Ma, X.; Zhu, Z.; Guo, X.; Zhang, Y.; Han, Y.; Song, Z.; et al. Recent progress of integrated circuits and optoelectronic chips. Sci. China Inf. Sci. 2021, 64, 201401. [Google Scholar] [CrossRef]
- Qian, C.; Fan, Z.-G.; Zheng, W.-W.; Bei, R.-X.; Zhu, T.-W.; Liu, S.-W.; Chi, Z.-G.; Aldred, M.P.; Chen, X.-D.; Zhang, Y.; et al. A Facile Strategy for Non-fluorinated Intrinsic Low-k and Low-loss Dielectric Polymers: Valid Exploitation of Secondary Relaxation Behaviors. Chin. J. Polym. Sci. 2020, 38, 213–219. [Google Scholar] [CrossRef]
- Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.-Y.; Sun, Y.-G.; Li, W.-Z.; Zhang, X.-S.; Luan, J. Synthesis and applications of low dielectric polyimide. Resour. Chem. Mater. 2022, in press. [CrossRef]
- Bei, R.; Chen, W.; Zhang, Y.; Liu, S.; Chi, Z.; Xu, J. Progress of low dielectric constant polyimide films. Insul. Mater. 2016, 49, 1–11. [Google Scholar] [CrossRef]
- Kourakata, Y.; Onodera, T.; Kasai, H.; Jinnai, H.; Oikawa, H. Ultra-low dielectric properties of porous polyimide thin films fabricated by using the two kinds of templates with different particle sizes. Polymer 2021, 212, 123115. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Dong, J.; Gan, F.; Zhao, X.; Zhang, Q. Preparation of low-κ polyimide resin with outstanding stability of dielectric properties versus temperature by adding a reactive Cardo-containing diluent. Compos. B Eng. 2019, 177, 107401. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Zhang, K.; Zhao, J.; Li, Y. Preparation of Polyimide Films with Ultra-Low Dielectric Constant by Phase Inversion. Crystals 2021, 11, 1383. [Google Scholar] [CrossRef]
- Meador, M.; Mcmillon, E.; Anna, S.; Barrios, E.; Wilmoth, N.G.; Mueller, C.H.; Miranda, F.A. Dielectric and Other Properties of Polyimide Aerogels Containing Fluorinated Blocks. ACS Appl. Mater. Interfaces 2014, 6, 6062–6068. [Google Scholar] [CrossRef]
- Wu, T.; Dong, J.; Gan, F.; Fang, Y.; Zhao, X.; Zhang, Q. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Appl. Surf. Sci. 2018, 440, 595–605. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, J.; Zhang, K.; Wu, Y.; Li, Y. Effect of co-solvent on the structure and dielectric properties of porous polyimide membranes. J. Phys. D Appl. Phys. 2018, 51, 215305. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Z.; Yang, T.; Bei, R.; Zhang, Y.; Liu, S.; Chi, Z.; Chen, X.; Xu, J. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. React. Funct. Polym. 2016, 108, 71–77. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Wang, H.; Li, E.; Yuan, Y. Investigation of PTFE-based ultra-low dielectric constant composite substrates with hollow silica ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 4550–4558. [Google Scholar] [CrossRef]
- Moldoveanu, S.C.; David, V. Chapter 7—Mobile Phases and Their Properties. In Essentials in Modern HPLC Separations; Moldoveanu, S.C., David, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Hong, Z.; Dongyang, W.; Yong, F.; Hao, C.; Yusen, Y.; Jiaojiao, Y.; Liguo, J. Dielectric properties of polyimide/SiO2 hollow spheres composite films with ultralow dielectric constant. Mater. Sci. Eng. B 2016, 203, 13–18. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152–155. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Pang, J.-B.; Qiu, K.-Y.; Wei, Y. A novel non-surfactant pathway to hydrothermally stable mesoporous silica materials. Microporous Mesoporous Mater. 2000, 40, 299–304. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, J.; Dong, H.; Li, S.; Wei, Y. Synthesis of polystyrene–silica hybrid mesoporous materials via the non-surfactant-templated sol–gel process. J. Mater. Chem. 2000, 10, 2490–2494. [Google Scholar] [CrossRef]
- Wei, Y.; Feng, Q.; Xu, J.; Dong, H.; Qiu, K.-Y.; Jansen, S.A.; Yin, R.; Ong, K.K. Polymethacrylate–Silica Hybrid Nanoporous Materials: A Bridge between Inorganic and Polymeric Molecular Sieves. Adv. Mater. 2000, 12, 1448–1450. [Google Scholar] [CrossRef]
- Pang, J.; Qiu, K.; Wei, Y. Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol–gel process. J. Non-Cryst. Solids 2001, 283, 101–108. [Google Scholar] [CrossRef]
- Hasegawa, M.; Hishiki, T. Poly(ester imide)s Possessing Low Coefficients of Thermal Expansion and Low Water Absorption (V). Effects of Ester-linked Diamines with Different Lengths and Substituents. Polymers 2020, 12, 859. [Google Scholar] [CrossRef] [Green Version]
- Hegde, N.D.; Venkateswara Rao, A. Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process. J. Mater. Sci. 2007, 42, 6965–6971. [Google Scholar] [CrossRef]
- Mahadik, D.; Jung, H.-N.; Lee, Y.K.; Lee, K.-Y.; Park, H.-H. Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process. J. Microelectron. Packag. Soc. 2016, 23, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Tewari, P.; Rajagopalan, R.; Furman, E.; Lanagan, M.T. Control of interfaces on electrical properties of SiO2–Parylene-C laminar composite dielectrics. J. Colloid Interface Sci. 2009, 332, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, A.; Mohamed, T.A.; Abu-Saied, M.; Helaly, H.; El-Dossoki, F. Structure/property relationship of polyvinyl alcohol/dimethoxydimethylsilane composite membrane: Experimental and theoretical studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117810. [Google Scholar] [CrossRef] [PubMed]
- Gangan, A.; ElSabbagh, M.; Bedair, M.A.; Ahmed, H.M.; El-Sabbah, M.; El-Bahy, S.M.; Fahmy, A. Influence of pH values on the electrochemical performance of low carbon steel coated by plasma thin SiOxCy films. Arab. J. Chem. 2021, 14, 103391. [Google Scholar] [CrossRef]
- Fahmy, A.; Abou-Saied, M.; Helaly, H.; El-Dessoki, F.; Mohamed, T.A. Novel PVA/Methoxytrimethylsilane elastic composite membranes: Preparation, characterization and DFT computation. J. Mol. Struct. 2021, 1235, 130173. [Google Scholar] [CrossRef]
- Llusar, M.; Monrós, G.; Roux, C.; Pozzo, J.L.; Sanchez, C. One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators. J. Mater. Chem. 2003, 13, 2505–2514. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yang, C.M.; Zibrowius, B.; Spliethoff, B.; Lindén, M.; Schüth, F. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Ia3d structure. Chem. Mater. 2003, 15, 5029–5035. [Google Scholar] [CrossRef]
- Wang, X.; Lin, K.S.K.; Chan, A.J.C.C.; Cheng, S. Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. J. Phys. Chem. B 2005, 109, 1763–1769. [Google Scholar] [CrossRef]
- Krysztafkiewicz, A.; Jesionowski, T.; Binkowski, S. Precipitated silicas modified with 3-aminopropyltriethoxysilane. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 73–84. [Google Scholar] [CrossRef]
- Zheng, J.-Y.; Pang, J.-B.; Qiu, K.-Y.; Wei, Y. Synthesis of Mesoporous Silica Materials via Non-surfactant Templated Sol-Gel Route by Using Mixture of Organic Compounds as Template. J. Sol-Gel Sci. Technol. 2002, 24, 81–88. [Google Scholar] [CrossRef]
- Okada, T.; Ando, S. Conformational characterization of imide compounds and polyimides using far-infrared spectroscopy and DFT calculations. Polymer 2016, 86, 83–90. [Google Scholar] [CrossRef]
- Jaiboon, V.; Yoosuk, B.; Prasassarakich, P. Amine modified silica xerogel for H2S removal at low temperature. Fuel Process. Technol. 2014, 128, 276–282. [Google Scholar] [CrossRef]
- Tung, H.-M.; Huang, J.-H.; Tsai, D.-G.; Ai, C.-F.; Yu, G.-P. Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater. Sci. Eng. A 2009, 500, 104–108. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Ju, S.; Park, S.Y.; Kim, Y.J.; Bong, J.; Lim, T.; Kim, K.W.; Rhee, J.Y.; Lee, Y. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Sci. Rep. 2015, 5, 14018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018; p. 12.
- Pearson, R.A.; Yee, A.F. Toughening mechanisms in elastomer-modified epoxies. J. Mater. Sci. 1989, 24, 2571–2580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-Y.; Yan, M.; Luo, K.-H.; Wei, Y.; Yeh, J.-M. Comparative Studies of the Dielectric Properties of Polyester Imide Composite Membranes Containing Hydrophilic and Hydrophobic Mesoporous Silica Particles. Materials 2023, 16, 140. https://doi.org/10.3390/ma16010140
Chen K-Y, Yan M, Luo K-H, Wei Y, Yeh J-M. Comparative Studies of the Dielectric Properties of Polyester Imide Composite Membranes Containing Hydrophilic and Hydrophobic Mesoporous Silica Particles. Materials. 2023; 16(1):140. https://doi.org/10.3390/ma16010140
Chicago/Turabian StyleChen, Kuan-Ying, Minsi Yan, Kun-Hao Luo, Yen Wei, and Jui-Ming Yeh. 2023. "Comparative Studies of the Dielectric Properties of Polyester Imide Composite Membranes Containing Hydrophilic and Hydrophobic Mesoporous Silica Particles" Materials 16, no. 1: 140. https://doi.org/10.3390/ma16010140