Strategies for Improving the CO2 Adsorption Process of CPO-27-Mg through Thermal Treatment and Urea Functionalization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. CPO-27-Mg Synthesis
2.3. CPO-27-Mg Post-Synthetic Modification with Urea-Isopropyl Alcohol Solutions
2.4. Powder X-ray Diffraction (PXRD)
2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
2.6. Thermogravimetric Analysis (TGA)–Mass Spectrometry (MS)
2.7. Gas Adsorption
3. Results and Discussion
3.1. Characterization
3.1.1. DRXP and FTIR
3.1.2. TGA-MS
3.2. Effect of the Degassing Conditions on CO2 Adsorption
3.3. Urea Functionalization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, J.B.; Schneider, S.H.; Oppenheimer, M.; Yohe, G.W.; Hare, W.; Mastrandrea, M.D.; Patwardhan, A.; Burton, I.; Corfee-Morlot, J.; Magadza, C.H.D.; et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proc. Natl. Acad. Sci. USA 2009, 106, 4133–4137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etheridge, D.M.; Steele, L.; Langenfelds, R.; Francey, R.; Barnola, J.-M.; Morgan, V. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 1996, 101, 4115–4128. [Google Scholar] [CrossRef] [Green Version]
- Dlugokencky, E.; Tans, P. Trends in Atmospheric Carbon Dioxide. Available online: www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 31 August 2022).
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Rackley, S.A. Carbon Capture and Storage, 2nd ed.; Elsevier Butterworth Heinemann: Burlington, VT, USA, 2017. [Google Scholar]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Yu, J.; Xie, L.-H.; Li, J.-R.; Ma, Y.; Seminario, J.M.; Balbuena, P.B. CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. Chem. Rev. 2017, 117, 9674–9754. [Google Scholar] [CrossRef]
- Rowsell, J.L.C.; Yaghi, O.M. Metal-Organic Frameworks: A New Class of Porous Materials. Micropor. Mesopor. Mater. 2004, 73, 3–14. [Google Scholar] [CrossRef]
- Nguyen Thi, T.V.; Luu, C.L.; Hoang, T.C.; Nguyen, T.; Bui, T.H.; Duy Nguyen, P.H.; Pham Thi, T.P. Synthesis of MOF-199 and application to CO2 adsorption. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 035016. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Lim, D.-W.; Yang, W.S.; Oh, T.-R.; Suh, M.P. A Highly Porous Metal–Organic Framework: Structural Transformations of a Guest-Free MOF Depending on Activation Method and Temperature. Chem. A Eur. J. 2011, 17, 7251–7260. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.O.; Kim, D.W.; Sagong, K. Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area. J. Solid State Chem. 2013, 197, 261–265. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Liu, X.; Hanna, S.L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O.K. A historical overview of the activation and porosity of metal–organic frameworks. Chem. Soc. Rev. 2020, 49, 7406–7427. [Google Scholar] [CrossRef] [PubMed]
- Mondloch, J.E.; Karagiaridi, O.; Farha, O.K.; Hupp, J.T. Activation of metal–organic framework materials. CrystEngComm 2013, 15, 9258–9264. [Google Scholar] [CrossRef]
- Kaye, S.S.; Dailly, A.; Yaghi, O.M.; Long, J.R. Impact of Preparation and Handling on the Hydrogen Storage Properties ofZn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177. [Google Scholar] [CrossRef] [PubMed]
- Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P.M.; Weselinski, Ł.J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P.N.; Emwas, A.-H.; et al. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137, 13308–13318. [Google Scholar] [CrossRef]
- Rosi, N.L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O.M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518. [Google Scholar] [CrossRef] [PubMed]
- Caskey, S.R.; Wong-Foy, A.G.; Matzger, A.J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. J. Am. Chem. Soc. 2008, 130, 10870–10871. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Yu, L.; Ren, Q.; Lu, X.; Deng, S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 2011, 353, 549–556. [Google Scholar] [CrossRef]
- Choi, S.; Watanabe, T.; Bae, T.-H.; Sholl, D.S.; Jones, C.W. Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases. J. Phys. Chem. Lett. 2012, 3, 1136–1141. [Google Scholar] [CrossRef]
- Andirova, D.; Lei, Y.; Zhao, X.; Choi, S. Functionalization of Metal–Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide Capture Conditions. ChemSusChem 2015, 8, 3405–3409. [Google Scholar] [CrossRef]
- Bernini, M.C.; García Blanco, A.A.; Villarroel-Rocha, J.; Fairen-Jimenez, D.; Sapag, K.; Ramirez-Pastor, A.J.; Narda, G.E. Tuning the target composition of amine-grafted CPO-27-Mg for capture of CO2 under post-combustion and air filtering conditions: A combined experimental and computational study. Dalton Trans. 2015, 44, 18970–18982. [Google Scholar] [CrossRef]
- Su, X.; Bromberg, L.; Martis, V.; Simeon, F.; Huq, A.; Hatton, T.A. Postsynthetic Functionalization of Mg-MOF-74 with Tetraethylenepentamine: Structural Characterization and Enhanced CO2 Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 11299–11306. [Google Scholar] [CrossRef] [PubMed]
- Villarroel-Rocha, D.; Godoy, A.A.; Toncón-Leal, C.; Villarroel-Rocha, J.; Moreno, M.S.; Bernini, M.C.; Narda, G.E.; Sapag, K. Synthesis of micro–mesoporous CPO-27-Mg@KIT-6 composites and their test in CO2 adsorption. New J. Chem. 2020, 44, 10056–10065. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Dubinin, M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Sing, K. Adsorption by Powders and Porous Solids; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Saito, A.; Foley, H.C. Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J. 1991, 37, 429–436. [Google Scholar] [CrossRef]
- Rege, S.U.; Yang, R.T. Corrected Horváth-Kawazoe equations for pore-size distribution. AIChE J. 2000, 46, 734–750. [Google Scholar] [CrossRef] [Green Version]
- XRD Crystallite (Grain) Size Calculator (Scherrer Equation). Available online: https://instanano.com/characterization/calculator/xrd/crystallite-size/ (accessed on 12 October 2022).
- Manivannan, M.; Rajendran, S. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. Eng. Sci. Technol. 2011, 3, 11. [Google Scholar]
- Madhurambal, G.; Mariappan, M.; Mojumdar, S.C. Thermal, UV and FTIR spectral studies of urea–thiourea zinc chloride single crystal. J. Therm. Anal. Calorim. 2010, 100, 763–768. [Google Scholar] [CrossRef]
- Teixeira, M.; Maia, R.A.; Shanmugam, S.; Louis, B.; Baudron, S.A. Impact of urea-based deep eutectic solvents on Mg-MOF-74 morphology and sorption properties. Micropor. Mesopor. Mater. 2022, 343, 112148. [Google Scholar] [CrossRef]
- Sun, H.; Ren, D.; Kong, R.; Wang, D.; Jiang, H.; Tan, J.; Wu, D.; Chen, S.; Shen, B. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks. Micropor. Mesopor. Mater. 2019, 284, 151–160. [Google Scholar] [CrossRef]
- Wade, C.R.; Dincã, M. Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). Dalton Trans. 2012, 41, 7931–7938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashourirad, B.; Sekizkardes, A.K.; Altarawneh, S.; El-kaderi, H.M. Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers. Chem. Mater. 2015, 27, 1349–1358. [Google Scholar] [CrossRef]
- Srinivas, G.; Krungleviciute, V.; Guo, Z.; Yildirim, T. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 2014, 7, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Sevilla, M.; Fuertes, A.B. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 2011, 4, 1765–1771. [Google Scholar] [CrossRef] [Green Version]
- Pramod, C.V.; Upendar, K.; Mohan, V.; Sarma, D.S.; Dhar, G.M.; Prasad, P.S.S.; Raju, B.D.; Rao, K.S.R. Hydrotalcite-SBA-15 composite material for efficient carbondioxide capture. J. CO2 Util. 2015, 12, 109–115. [Google Scholar] [CrossRef]
- Moura, P.A.S.; Bezerra, D.P.; Vilarrasa-Garcia, E.; Bastos-Neto, M.; Azevedo, D.C.S. Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption 2016, 22, 71–80. [Google Scholar] [CrossRef]
Compound | Dp (nm) | % Decrease of Dp |
---|---|---|
CPO-27-Mg | 54.8 | - |
CPO-27-Mg-F10 | 40.2 | 26.59 |
CPO-27-Mg-F25 | 40.0 | 26.95 |
CPO-27-Mg-F50 | 50.8 | 7.33 |
CPO-27-Mg-F100 | 45.7 | 16.55 |
Sample | SBET (m2 g−1) | VμP-N21 (cm3 g−1) | VmP-N22 (cm3 g−1) | VTP3 (cm3 g−1) | VμP-CO21 (cm3 g−1) |
---|---|---|---|---|---|
CPO-27-Mg- Tdegas330 | 1630 | 0.63 | 0.03 | 0.69 | 0.60 |
CPO-27-Mg- Tdegas250 | 1055 | 0.40 | 0.05 | 0.45 | 0.40 |
CPO-27-Mg- Tdegas140 | 490 | 0.19 | 0.05 | 0.24 | 0.18 |
Sample | Conditions | CO2 Uptake (mmol g−1) | Ref. |
---|---|---|---|
CPO-27-Mg Tdegas330 | 1 bar, 298 K | 8.01 | This work |
10 bar, 298 K | 12.26 | ||
CPO-27-Mg-F25 Tdegas190 | 1 bar, 298 K | 9.0 | This work |
10 bar, 298 K | 15.27 | ||
CPO-27-Mg-F10 Tdegas190 | 1 bar, 298 K | 6.7 | This work |
10 bar, 298 K | 11.2 | ||
Mg-MOF74 | 1 bar, 296 K | 5.91 | [14] |
ED-Mg/DOBDC (ethylene diamine functionalized) | 400 ppm CO2/Ar, 298 K | 1.51 | [12] |
ED-Mg/DOBDC (ethylene diamine functionalized) | 1 bar, 298 K | 4.66 | [13] |
CPO-27-Mg-c (ethylene diamine functionalized) | 1 bar, 298 K | 5.4 | [16] |
TEPA-Mg-MOF-74 (TEPA functionalized) | 1 bar, 298 K | 6.11 | [17] |
Cu3(BTC)2 | 1 bar, 315 K | 2.5 | [36] |
Ni3(BTC)2(Me2NH)2(H2O) | 1 bar, 313 K | 2.05 | [25] |
CPC-700 (polymer-derived N-doped carbon) | 10 bar, 298 K | 14.1 | [37] |
HPC5b2-1100 (MOF-derived hierarchical carbon) | 10 bar, 298 K | 13.9 | [38] |
AS-2-600 (activated carbon) | 1 bar, 298 K | 4.8 | [39] |
HB (hydrotalcite—layered double hydroxide) | 1 bar, 343 K | 1.8 | [40] |
LiX Zeolite | 10 bar, 298 K | 8.87 | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godoy, A.A.; Villarroel-Rocha, D.; Arroyo-Gómez, J.J.; Bernini, C.; Narda, G.; Sapag, K. Strategies for Improving the CO2 Adsorption Process of CPO-27-Mg through Thermal Treatment and Urea Functionalization. Materials 2023, 16, 117. https://doi.org/10.3390/ma16010117
Godoy AA, Villarroel-Rocha D, Arroyo-Gómez JJ, Bernini C, Narda G, Sapag K. Strategies for Improving the CO2 Adsorption Process of CPO-27-Mg through Thermal Treatment and Urea Functionalization. Materials. 2023; 16(1):117. https://doi.org/10.3390/ma16010117
Chicago/Turabian StyleGodoy, Agustín A., Dimar Villarroel-Rocha, José Joaquín Arroyo-Gómez, Celeste Bernini, Griselda Narda, and Karim Sapag. 2023. "Strategies for Improving the CO2 Adsorption Process of CPO-27-Mg through Thermal Treatment and Urea Functionalization" Materials 16, no. 1: 117. https://doi.org/10.3390/ma16010117
APA StyleGodoy, A. A., Villarroel-Rocha, D., Arroyo-Gómez, J. J., Bernini, C., Narda, G., & Sapag, K. (2023). Strategies for Improving the CO2 Adsorption Process of CPO-27-Mg through Thermal Treatment and Urea Functionalization. Materials, 16(1), 117. https://doi.org/10.3390/ma16010117