Amino Surface Modification and Fluorescent Labelling of Porous Hollow Organosilica Particles: Optimization and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Preparation
2.2.1. Synthesis of Porous Hollow Organosilica Particles (pHOPs)
2.2.2. Synthesis of Amino-Modified pHOPs (pHOP-NH2)
2.2.3. Fluorescent Labelling of pHOP-NH2 with FITC
2.3. Sample Characterization
2.3.1. Transmission Electron Microscopy (TEM)
2.3.2. Dynamic Light Scattering (DLS)
2.3.3. Zeta Potential Measurements
2.3.4. Microfluidic Resistive Pulse Sensing (MRPS)
2.3.5. Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
2.3.6. UV-Vis Spectroscopy
2.3.7. Fluorescence Spectroscopy
2.3.8. Small-Angle X-ray Scattering (SAXS)
3. Results and Discussion
3.1. Size and Morphology of Unmodified pHOPs
3.2. Optimizing the Reaction Conditions for Preparing Amino-Modified pHOPs (pHOP-NH2)
3.2.1. Effect of pH
3.2.2. Effect of Reaction Temperature
3.2.3. Effect of Reaction Time
3.2.4. Effect of APDEMS Concentration
3.3. Fluorescent Labelling of pHOP-NH2 with FITC
3.3.1. Size, Morphology, and Zeta Potential of F-HOPs
3.3.2. FT-IR Spectroscopy of pHOP, pHOP-NH2, and F-HOP
3.3.3. Optical Properties of F-HOPs
3.3.4. Characterization of the Porous Structure of F-HOP with SAXS and Its Colloidal Stability with DLS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, E.; Dehghannejad, N.; Hashemikia, S.; Ghasemnejad, M.; Tabebordbar, H. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv. 2014, 21, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, S.; Thaplyal, P.; Ganguli, A.K. Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures. Nanoscale Res. Lett. 2011, 6, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Cantu, E.; Cueto, R.; Koch, J.; Russo, P.S. Synthesis and Rapid Characterization of Amine-Functionalized Silica. Langmuir 2012, 28, 5562–5569. [Google Scholar] [CrossRef]
- Rahman, I.; Jafarzadeh, M.; Sipaut, C.S. Synthesis of organo-functionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES). Ceram. Int. 2009, 35, 1883–1888. [Google Scholar] [CrossRef]
- Jafarzadeh, M.; Rahman, I.A.; Sipaut, C.S. Optical properties of amorphous organo-modified silica nanoparticles produced via co-condensation method. Ceram. Int. 2010, 36, 333–338. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef]
- Rath, D.; Rana, S.; Parida, K.M. Organic amine-functionalized silica-based mesoporous materials: An update of syntheses and catalytic applications. RSC Adv. 2014, 4, 57111–57124. [Google Scholar] [CrossRef]
- Ha, C.-S.; Park, S.S. Periodic Mesoporous Organosilicas: Preparation, Properties and Applications; Springer Series in Materials Science; Springer: Singapore, 2019; Volume 281, ISBN 9789811329586. [Google Scholar]
- Kickelbick, G. Hybrid Inorganic–Organic Mesoporous Materials. Angew. Chem. Int. Ed. 2004, 43, 3102–3104. [Google Scholar] [CrossRef]
- Ruiz-Cañas, M.C.; Corredor, L.M.; Quintero, H.I.; Manrique, E.; Bohórquez, A.R.R. Morphological and Structural Properties of Amino-Functionalized Fumed Nanosilica and Its Comparison with Nanoparticles Obtained by Modified Stöber Method. Molecules 2020, 25, 2868. [Google Scholar] [CrossRef]
- Čampelj, S.; Makovec, D.; Drofenik, M. Functionalization of magnetic nanoparticles with 3-aminopropyl silane. J. Magn. Magn. Mater. 2009, 321, 1346–1350. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Q.; Finch, J. Silanation and stability of 3-aminopropyl triethoxy silane on nanosized superparamagnetic particles: I. Direct silanation. Appl. Surf. Sci. 1997, 120, 269–278. [Google Scholar] [CrossRef]
- Sen, T.; Bruce, I.J. Mesoporous silica–magnetite nanocomposites: Fabrication, characterisation and applications in biosciences. Microporous Mesoporous Mater. 2009, 120, 246–251. [Google Scholar] [CrossRef]
- Bini, R.A.; Marques, R.F.C.; Santos, F.J.; Chaker, J.A.; Jafeliccir, M.J. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. J. Magn. Magn. Mater. 2012, 324, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Soares, M.C.P.; Gomes, M.K.; Schenkel, E.A.; Rodrigues, M.D.S.; Suzuki, C.K.; de la Torre, L.G.; Fujiwara, E. Evaluation of silica nanoparticle colloidal stability with a fiber optic quasi-elastic light scattering sensor. Braz. J. Chem. Eng. 2019, 36, 1519–1534. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.-H.; Schmidt, W.; Spliethoff, B.; Schuth, F. Synthesis and Characterization of Nanocast Silica NCS-1 with CMK-3 as a Template. Chem.—A Eur. J. 2004, 10, 6085–6092. [Google Scholar] [CrossRef]
- Al-Khafaji, M.A.; Gaál, A.; Wacha, A.; Bóta, A.; Varga, Z. Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques. Materials 2020, 13, 3101. [Google Scholar] [CrossRef]
- Wacha, A.; Varga, Z.; Bóta, A. CREDO: A new general-purpose laboratory instrument for small-angle X-ray scattering. J. Appl. Crystallogr. 2014, 47, 1749–1754. [Google Scholar] [CrossRef] [Green Version]
- Klippel, N.; Jung, G.; Kickelbick, G. Hybrid inorganic-organic fluorescent silica nanoparticles—Influence of dye binding modes on dye leaching. J. Sol-Gel Sci. Technol. 2021, 1–18. [Google Scholar] [CrossRef]
- Imhof, A.; Megens, M.; Engelberts, J.J.; de Lang, D.T.N.; Sprik, R.; Vos, W. Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres. J. Phys. Chem. B 1999, 103, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Abou-Hamad, E.; Anjum, D.H.; Zhou, L.; Laveille, P.V.; Emsley, L.; Basset, J.-M. Well-defined mono(η3-allyl)nickel complex ≡MONi(η3-C3H5) (M = Si or Al) grafted onto silica or alumina: A molecularly dispersed nickel precursor for syntheses of supported small size nickel nanoparticles. Chem. Commun. 2014, 50, 7716–7719. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, A.; Ilharco, L.M. Chemical Tailoring of Porous Silica Xerogels: Local Structure by Vibrational Spectroscopy. Chem. Eur. J. 2004, 10, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, J.C.; Schneider, M.; Hauler, O.; Lorenz, G.; Rebner, K.; Kandelbauer, A. A Process Analytical Concept for In-Line FTIR Monitoring of Polysiloxane Formation. Polymers 2020, 12, 2473. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Su, X.; Zheng, Y.; Zhang, J.; Liu, Y.; Wang, S.; Wu, J.; Chen, G.; Wang, J.; Zhao, D.; et al. A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres. J. Am. Chem. Soc. 2015, 137, 7935–7944. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley: Chichester, UK; New York, NY, USA, 2001; ISBN 978-0-471-85298-8. [Google Scholar]
- Kanugala, S.; Jinka, S.; Puvvada, N.; Banerjee, R.; Kumar, C.G. Phenazine-1-carboxamide functionalized mesoporous silica nanoparticles as antimicrobial coatings on silicone urethral catheters. Sci. Rep. 2019, 9, 6198. [Google Scholar] [CrossRef] [Green Version]
- Han, D.-M.; Fang, G.-Z.; Yan, X.-P. Preparation and evaluation of a molecularly imprinted sol–gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples. J. Chromatogr. A 2005, 1100, 131–136. [Google Scholar] [CrossRef]
- Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S. Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 411, 72–77. [Google Scholar] [CrossRef]
- Suteewong, T.; Sai, H.; Lee, J.; Bradbury, M.; Hyeon, T.; Gruner, S.M.; Wiesner, U. Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: Structure evolution during synthesis. J. Mater. Chem. 2010, 20, 7807. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Abadeer, N.; Haynes, C.L. Stability of small mesoporous silicananoparticles in biological media. Chem. Commun. 2011, 47, 532–534. [Google Scholar] [CrossRef]
- Etienne, M. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta 2003, 59, 1173–1188. [Google Scholar] [CrossRef]
- Etienne, M.; Goubert-Renaudin, S.; Rousselin, Y.; Marichal, C.; Denat, F.; Lebeau, B.; Walcarius, A. Multiarm Cyclam-Grafted Mesoporous Silica: A Strategy to Improve the Chemical Stability of Silica Materials Functionalized with Amine Ligands. Langmuir 2009, 25, 3137–3145. [Google Scholar] [CrossRef] [PubMed]
- Roebben, G.; Kestens, V.; Varga, Z.; Charoud-Got, J.; Ramaye, Y.; Gollwitzer, C.; Bartczak, D.; Geißler, D.; Noble, J.; Mazoua, S.; et al. Reference materials and representative test materials to develop nanoparticle characterization methods: The NanoChOp project case. Front. Chem. 2015, 3, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | pH | Temp. (°C) | Time (min) | APDEMS (μmol) |
---|---|---|---|---|
M1 | 4.2 | 30 | 10 | 0.6 |
M2 | 7.2 | 30 | 10 | 0.6 |
M3 | 10.2 | 30 | 10 | 0.6 |
M4 | 10.2 | 40 | 10 | 0.6 |
M5 | 10.2 | 50 | 10 | 0.6 |
M6 | 10.2 | 60 | 10 | 0.6 |
M7 | 10.2 | 60 | 30 | 0.6 |
M8 | 10.2 | 60 | 60 | 0.6 |
M9 | 10.2 | 60 | 10 | 1.2 |
M10 | 10.2 | 60 | 10 | 1.8 |
M11 | 10.2 | 60 | 10 | 2.4 |
M12 | 10.2 | 60 | 10 | 3.0 |
Sample | DLS | Zeta Potential (mV) | ||||
---|---|---|---|---|---|---|
Mean Dia. (nm) | PDI | pH 2.9 | pH 5.1 | pH 6.2 | pH 8.5 | |
pHOP | 330.98 | 0.5 | −28.1 | −39.1 | −42.2 | −47.3 |
M1 | 386.56 | 0.8 | −10.1 | −29.8 | −42.6 | −47.8 |
M2 | 360.64 | 0.22 | 9.1 | −13.3 | −38.7 | −48.9 |
M3 | 337.34 | 0.44 | 11 | 16.4 | −43.2 | −46.5 |
M4 | 325.76 | 0.76 | 13.4 | 11.4 | −41.5 | −43.3 |
M5 | 333.30 | 0.58 | 19.7 | 17.7 | −48.6 | −47.4 |
M6 | 352.90 | 0.33 | 21.2 | 17.7 | −41.4 | −44 |
M7 | 367.37 | 0.40 | 22.9 | 24.7 | −29.1 | −41.9 |
M8 | 396.38 | 0.12 | 27.4 | 29 | −28.6 | −39.8 |
M9 | 323.18 | 0.58 | 25.4 | 28.3 | −30.4 | −48.6 |
M10 | 388.25 | 0.06 | 33.3 | 34.7 | −25.8 | −47.9 |
M11 | 407.50 | 0.07 | 31 | 32.7 | −26.5 | −48.9 |
M12 | 433.73 | 0.15 | 32.3 | 31 | −23.2 | −44.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khafaji, M.A.; Gaál, A.; Jezsó, B.; Mihály, J.; Varga, Z. Amino Surface Modification and Fluorescent Labelling of Porous Hollow Organosilica Particles: Optimization and Characterization. Materials 2022, 15, 2696. https://doi.org/10.3390/ma15072696
Al-Khafaji MA, Gaál A, Jezsó B, Mihály J, Varga Z. Amino Surface Modification and Fluorescent Labelling of Porous Hollow Organosilica Particles: Optimization and Characterization. Materials. 2022; 15(7):2696. https://doi.org/10.3390/ma15072696
Chicago/Turabian StyleAl-Khafaji, Mohammed A., Anikó Gaál, Bálint Jezsó, Judith Mihály, and Zoltán Varga. 2022. "Amino Surface Modification and Fluorescent Labelling of Porous Hollow Organosilica Particles: Optimization and Characterization" Materials 15, no. 7: 2696. https://doi.org/10.3390/ma15072696