Influence of Loading Conditions on the Mechanical Performance of Multifilament Coreless UHMWPE Sutures Used in Orthopaedic Surgery
Abstract
:1. Introduction
- The non-linearity of the stiffness which would affect the elongation at different load levels.
- The dependence of the resistance and stiffness on the loading velocity which would limit the speed and intensity of the exercises.
- The influence of the previous cyclic loading and resting periods on single-loading properties.
2. Materials and Methods
2.1. Proposed Curve–Fitting Models
- Linear model:
- Bilinear model:
- A 3-parameter polynomial model for hyperelastic incompressible materials known as the Signiorini model [23]:
2.2. Effect of Loading Velocity on the Suture Resistance
- Linear model of Equation (3):
- Bilinear model of Equation (4), two different values for two strain levels, low and high:
- The hyperelastic model from Equation (5), a parameter continuously dependent on the stretch ratio:in Equations (8)–(10) is also the stress–strain rate of the sutures, since the strain () and the stretch ratio are related by
2.3. Effect of a Previous Cyclic Loading on Suture Stiffness
2.4. Persistence over Time of the Effects of Previous Cyclic Loading
2.5. Statistical Analysis
3. Results
3.1. Modelling of the Curve
3.2. Influence of the Loading Velocity
3.3. Influence of a Previous Cyclic Loading
3.4. Time Persistence of Previous Cyclic Loading Effects
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Based on the relative displacements measured by the LVDT between gripping points.
- Based on the displacement computed by videogrammetry between two points in the central area of the suture sample.


Appendix B
Appendix C


Appendix D
| 0.1 mm/s | 0.5 mm/s | 1 mm/s | 5 mm/s | 10 mm/s |
|---|---|---|---|---|
| 6149 (1308) | 6435 (1535) | 6489 (1273) | 6816 (1297) | 7491 (622) |
References
- Seil, R.; Rupp, S.; Kohn, D.M. Cyclic testing of meniscal sutures. Arthroscopy 2000, 16, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Erçin, E.; Karahan, M. Literature Review of Suture Materials. In Knots in Orthopedic Surgery: Open and Arthroscopic Techniques; ESSKA, Ed.; Springer: Berlin/Heidelberg, Germany; Istanbul, Turkey, 2018; pp. 177–180. ISBN 9783662561089. [Google Scholar]
- Akgun, U.; Karahan, M.; Randelli, P.S.; Espregueira-Mendes, J. Knots in ORTHOPEDIC Surgery: Open and Arthroscopic Techniques, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9783662561089. [Google Scholar]
- Wüst, D.M.; Meyer, D.C.; Favre, P.; Gerber, C. Mechanical and Handling Properties of Braided Polyblend Polyethylene Sutures in Comparison to Braided Polyester and Monofilament Polydioxanone Sutures. Arthroscopy 2006, 22, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.B.; Budoff, J.E.; Yeh, M.L.; Kelm, Z.S.; Luo, Z.P. Strength of Damaged Suture: An In Vitro Study. Arthroscopy 2006, 22, 1270–1275.e3. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Gomide, L.; de Oliveira Campos, D.; Amaral Araújo, C.; Lima Menegaz, G.; Silva Cardoso, R.; Crosara Saad, S. Mechanical study of the properties of sutures used in orthopaedics surgeries. Rev. Bras. Ortop. 2019, 54, 247–252. [Google Scholar] [CrossRef]
- Teleflex. Force Fiber Sutures and Braids. Force Fiber Fusion®. Suture Force Fiber®. OrthoTape® Braid. Force Fiber® Suture; Teleflex Incorporated: Wayne, PA, USA, 2020; pp. 1–8. [Google Scholar]
- Mahesh, L.; Kumar, V.R.; Jain, A.; Shukla, S.; Aragoneses, J.M.; González, J.M.M.; Fernández-Domínguez, M.; Calvo-Guirado, J.L. Bacterial Adherence Around Sutures of Different Material at Grafted Site: A Microbiological Analysis. Materials 2019, 12, 2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Pharmacopeia. The National Formulary: NF24, 24th ed.; United States Pharmacopeial Convention, Ed.; United States Pharmacopeial Convention: Rockville, MD, USA, 2006; Volume USP29, ISBN 1889788392. [Google Scholar]
- Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The effect of bottom profile dimples on the femoral head on wear in metal-on-metal total hip arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca stress simulation of metal-on-metal total hip arthroplasty during normal walking activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Savage, E.; Hurren, C.J.; Slader, S.; Khan, L.A.K.; Sutti, A.; Page, R.S. Bending and Abrasion Fatigue of Common Suture Materials Used in Arthroscopic and Open Orthopedic Surgery. J. Orthop. Res. 2013, 31, 132–138. [Google Scholar] [CrossRef]
- Barber, F.A.; Herbert, M.A.; Beavis, R.C. Cyclic Load and Failure Behavior of Arthroscopic Knots and High Strength Sutures. Arthroscopy 2009, 25, 192–199. [Google Scholar] [CrossRef]
- Ensminger, W.P.; McIff, T.; Vopat, B.; Mullen, S.; Schroeppel, J.P. Mechanical Comparison of High-Strength Tape Suture versus High-Strength Round Suture. Arthrosc. Sports Med. Rehabil. 2021, 3, e1525–e1534. [Google Scholar] [CrossRef]
- Jordan, M.C.; Boelch, S.; Jansen, H.; Meffert, R.H.; Hoelscher-Doht, S. Does plastic suture deformation induce gapping after tendon repair? A biomechanical comparison of different suture materials. J. Biomech. 2016, 49, 2607–2612. [Google Scholar] [CrossRef] [PubMed]
- Feucht, M.J.; Grande, E.; Brunhuber, J.; Rosenstiel, N.; Burgkart, R.; Imhoff, A.B.; Braun, S. Biomechanical evaluation of different suture materials for arthroscopic transtibial pull-out repair of posterior meniscus root tears. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe; European Pharmacopoeia Commission; European Directorate for the Quality of Medicines and Healthcare. European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010; Volume 1. [Google Scholar]
- Marcus, B.C. Wound closure techniques. In Local Flaps in Facial Reconstruction; Shan, R.B., Ed.; Mosby: Ann Arbor, MI, USA, 2007; Volume 1, pp. 41–64. ISBN 9780323036849. [Google Scholar]
- Abbi, G.; Espinoza, L.; Odell, T.; Mahar, A.; Pedowitz, R. Evaluation of 5 Knots and 2 Suture Materials for Arthroscopic Rotator Cuff Repair: Very Strong Sutures Can Still Slip. Arthroscopy 2006, 22, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Swan, K.G.; Baldini, T.; McCarty, E.C. Arthroscopic suture material and knot type: An updated biomechanical analysis. Am. J. Sports Med. 2009, 37, 1578–1585. [Google Scholar] [CrossRef]
- Hurwit, D.; Fanton, G.; Tella, M.; Behn, A.; Hunt, K.J. Viscoelastic Properties of Common Suture Material Used for Rotator Cuff Repair and Arthroscopic Procedures. Arthroscopy 2014, 30, 1406–1412. [Google Scholar] [CrossRef]
- Taha, M.E.; Schneider, K.; Clarke, E.C.; O’Briain, D.E.; Smith, M.M.; Cunningham, G.; Cass, B.; Young, A.A. A Biomechanical Comparison of Different Suture Materials Used for Arthroscopic Shoulder Procedures. Arthroscopy 2020, 36, 708–713. [Google Scholar] [CrossRef]
- Szurgott, P.; Jarzębski, Ł. Selection of a hyper-elastic material model—A case study for a polyurethane component. Lat. Am. J. Solids Struct. 2019, 1–16. [Google Scholar] [CrossRef]
- Prado-Novoa, M.; Perez-Blanca, A.; Espejo-Reina, A.; Espejo-Reina, M.J.; Espejo-Baena, A. Initial Biomechanical Properties of Transtibial Meniscal Root Repair are Improved By Using a Knotless Anchor as a Post-Insertion Tensioning Device. Sci. Rep. 2020, 10, 1748. [Google Scholar] [CrossRef] [Green Version]
- Mesfar, W.; Shirazi-Adl, A. Knee joint biomechanics in open-kinetic-chain flexion exercises. Clin. Biomech. 2008, 23, 477–482. [Google Scholar] [CrossRef]
- Choi, Y.; Kang, M.; Choi, M.S.; Song, J.K.; Lih, E.; Lee, D.; Jung, H.H. Biomechanical Properties and Biocompatibility of a Non-Absorbable Elastic Thread. J. Funct. Biomater. 2019, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Najibi, S.; Banglmeier, R.; Matta, J.; Tannast, M. Material properties of common suture materials in orthopaedic surgery. Iowa Orthop. J. 2010, 30, 84. [Google Scholar] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 2005, 37, 1948–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogervorst, P.; Bolsterlee, B.; Pijper, M.; Aalsma, A.; Verdonschot, N. Forces acting on the clavicle during shoulder abduction, forward humeral flexion and activities of daily living. Clin. Biomech. 2019, 69, 79–86. [Google Scholar] [CrossRef]
- Mörl, F.; Günther, M.; Riede, J.M.; Hammer, M.; Schmitt, S. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine. Biomech. Model. Mechanobiol. 2020, 19, 2015–2047. [Google Scholar] [CrossRef]
- ASTM D2256/D2256M-21; Standard Test Method for Tensile Properties of Yarns by the Single-Strand Method; Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2021.
- Açan, A.E.; Hapa, O.; Barber, F.A. Mechanical properties of suture materials. In Knots in Orthopedic Surgery: Open and Arthroscopic Techniques; Springer: Berlin/Heidelberg, Germany, 2018; pp. 21–31. [Google Scholar]
- Holmlund, D.E.W. Physical properties of surgical suture materials: Stress-strain relationship, stress-relaxation and irreversible elongation. Ann. Surg. 1976, 184, 189. [Google Scholar] [CrossRef]
- Meyer, D.C.; Nyffeler, R.W.; Fucentese, S.F.; Gerber, C. Failure of suture material at suture anchor eyelets. Arthroscopy 2002, 18, 1013–1019. [Google Scholar] [CrossRef]




| Model | Goodness | 0.1 mm/s | 0.5 mm/s | 1 mm/s | 5 mm/s | 10 mm/s |
|---|---|---|---|---|---|---|
| Linear model | Adj. R | 0.95 (0.01) | 0.96 (0.00) | 0.96 (0.01) | 0.97 (0.01) | 0.97 (0.01) |
| RMSE | 29.20 (3.31) | 31.46 (7.69) | 28.44 (6.06) | 26.70 (6.31) | 32.11 (2.70) | |
| Bilinear model | Adj. R | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) |
| RMSE | 7.32 (0.95) | 7.03 (1.43) | 7.56 (1.44) | 6.86 (1.42) | 9.51 (2.28) | |
| Hyperelastic model | Adj. R | 0.99 (0.00) | 0.99 (0.00) | 0.99 (0.00) | 0.990 (0.00) | 0.99 (0.00) |
| RMSE | 9.50 (2.81) | 11.49 (2.30) | 10.35 (3.07) | 15.46 (3.14) | 15.43 (3.53) |
| Loading Velocity(mm/s) | ||||||
|---|---|---|---|---|---|---|
| (MPa) | (MPa) | (N) | (MPa) | |||
| 0.1 | 3754 | 8789 | 1.037 | 33.20 | 786.06 | 1.108 |
| (904) | (1336) | (0.003) | (4.95) | (79.79) | (0.077) | |
| 0.5 | 3976 | 9482 | 1.040 | 37.87 | 832.12 | 1.103 |
| (665) | (2021) | (0.003) | (3.66) | (47.13) | (0.015) | |
| 1 | 4236 | 9117 | 1.038 | 37.44 | 723.82 | 1.095 |
| (889) | (1753) | (0.003) | (7.31) | (108.97) | (0.015) | |
| 5 | 4570 | 9207 | 1.038 | 42.13 | 846.13 | 1.106 |
| (674) | (1675) | (0.003) | (5.42) | (75.82) | (0.016) | |
| 10 | 4903 | 10,238 | 1.036 | 42.57 | 874.11 | 1.098 |
| (561) | (839) | (0.002) | (6.70) | (124.23) | (0.009) |
| Previous Cyclic Loading | ||||||
|---|---|---|---|---|---|---|
| (MPa) | (MPa) | (N) | (MPa) | |||
| No cyclic | 4236 | 9117 | 1.038 | 37.44 | 723.82 | 1.095 |
| (889) | (1753) | (0.003) | (7.31) | (108.97) | (0.015) | |
| 1–10 N | 4459 | 9058 | 1.042 | 45.54 | 881.87 | 1.116 |
| (321) | (1038) | (0.004) | (3.20) | (111.96) | (0.016) | |
| 1–30 N | 9947 | 7319 | 1.014 | 37.73 | 837.22 | 1.110 |
| (754) | (667) | (0.003) | (4.98) | (124.33) | (0.024) | |
| 1–50 N | 13,908 | 10,823 | 1.020 | 63.69 | 844.99 | 1.072 |
| (871) | (771) | (0.008) | (18.25) | (117.08) | (0.013) |
| Previous Cyclic Loading | ||||||
|---|---|---|---|---|---|---|
| (MPa) | (MPa) | (N) | (MPa) | |||
| No cyclic | 4236 | 9117 | 1.038 | 37.44 | 723.82 | 1.095 |
| (889) | (1753) | (0.003) | (7.31) | (108.97) | (0.015) | |
| No relax | 13,908 | 10,823 | 1.020 | 63.69 | 844.99 | 1.072 |
| (871) | (771) | (0.008) | (18.25) | (117.08) | (0.013) | |
| 2 min relax | 13,791 | 13,096 | 1.021 | 63.60 | 792.75 | 1.060 |
| (1051) | (433) | (0.003) | (5.92) | (59.24) | (0.005) | |
| 24 h relax | 5445 | 7718 | 1.026 | 34.00 | 782.72 | 1.105 |
| (834) | (1263) | (0.010) | (6.91) | (115.42) | (0.008) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado-Novoa, M.; Perez-Sanchez, L.; Estebanez, B.; Moreno-Vegas, S.; Perez-Blanca, A. Influence of Loading Conditions on the Mechanical Performance of Multifilament Coreless UHMWPE Sutures Used in Orthopaedic Surgery. Materials 2022, 15, 2573. https://doi.org/10.3390/ma15072573
Prado-Novoa M, Perez-Sanchez L, Estebanez B, Moreno-Vegas S, Perez-Blanca A. Influence of Loading Conditions on the Mechanical Performance of Multifilament Coreless UHMWPE Sutures Used in Orthopaedic Surgery. Materials. 2022; 15(7):2573. https://doi.org/10.3390/ma15072573
Chicago/Turabian StylePrado-Novoa, Maria, Laura Perez-Sanchez, Belen Estebanez, Salvador Moreno-Vegas, and Ana Perez-Blanca. 2022. "Influence of Loading Conditions on the Mechanical Performance of Multifilament Coreless UHMWPE Sutures Used in Orthopaedic Surgery" Materials 15, no. 7: 2573. https://doi.org/10.3390/ma15072573
APA StylePrado-Novoa, M., Perez-Sanchez, L., Estebanez, B., Moreno-Vegas, S., & Perez-Blanca, A. (2022). Influence of Loading Conditions on the Mechanical Performance of Multifilament Coreless UHMWPE Sutures Used in Orthopaedic Surgery. Materials, 15(7), 2573. https://doi.org/10.3390/ma15072573

