Comparison of the Mechanical Properties and Microstructures of QB2.0 and C17200 Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Properties
3.2. Microstructure Observations
3.3. EBSD Analysis of the Microscopic Structure
3.4. Microstructure Observations by TEM
4. Conclusions
- (1)
- In the peak-aged state, the tensile and yield strengths of the C17200 alloy were much higher than those of QBe2.0 alloy. Compared with the initial state, the strength increment of the C17200 alloy after aging was significantly higher than that of the QBe2.0 alloy, and the elongation was significantly reduced.
- (2)
- The grain size of C17200 alloy was smaller and the distribution was more uniform than those of QBe2.0 alloy. Moreover, the percentages of low-angle grain boundaries and twin density in C17200 alloy were much higher than those in QBe2.0 alloy, resulting in a more pronounced grain boundary strengthening effect.
- (3)
- A large number of γ’, γ and β phases were precipitated in both alloys. The density of the γ’ phase in the C17200 alloy was greater, while the amounts of the brittle β phase were smaller than those of the QBe2.0 alloy.
- (4)
- The higher strength of the C17200 alloy was mainly caused by the combined effects of grain refinement strengthening, dislocation strengthening, twin strengthening, and precipitation strengthening.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behjati, P.; Dastjerdi, H.V.; Mahdavi, R. Influence of ageing process on sound velocity in C17200 copper-beryllium alloy. J. Alloys Compd. 2020, 505, 739–742. [Google Scholar] [CrossRef]
- Berto, F.; Lazzarin, P.; Gallo, P. High-temperature fatigue strength of a coppere-cobalte-beryllium alloy. J. Strain Anal. Eng. Des. 2014, 49, 244–256. [Google Scholar] [CrossRef]
- Monzen, R.; Takagawaa, Y.; Watanabe, C.; Terada, D.; Tsuji, N. Mechanical properties of precipitation strengthening Cu-base alloys highly deformed by ARB process. Proc. Eng. 2011, 10, 2417–2422. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, F.Y.; Yan, M.F. Microstructure and mechanical properties of multiphase layer formed during thermo-diffusing of titanium into the surface of C17200 copper–beryllium alloy. Appl. Surf. Sci. 2014, 292, 225–230. [Google Scholar] [CrossRef]
- Nie, J.F.; Muddle, B.C.; Polmear, I.J. The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys. Mater. Sci. Forum 1996, 217–222, 1257–1262. [Google Scholar] [CrossRef]
- Matthiessen, A.; Vogt, G. The electrical resistivity of alloys. Ann. Phys. Chem. 1864, 122, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.R. (Ed.) Copper and Copper Alloys; ASM International: Almere, The Netherlands, 2001; pp. 153–168. [Google Scholar]
- Monzen, R.; Tada, T.; Seo, T.; Higashimine, K. Ostwald ripening of rod-shaped α-Fe particles in a Cu matrix. Mater. Lett. 2004, 58, 2007–2011. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Choy, Y.S.; Cheung, C.S.; Chu, H.K. Comparison of tribology performance, particle emissions and brake squeal noise between Cu-containing and Cu-free brake materials. Wear 2020, 466–467, 203577. [Google Scholar] [CrossRef]
- Xie, G.L.; Wang, Q.S.; Mi, X.J.; Xiong, B.Q.; Peng, L.J. The precipitation behavior and strengthening of a Cu-2.0 wt% Be alloy. Mater. Sci. Eng. A 2012, 558, 326–330. [Google Scholar]
- Liu, P.; Ren, F.Z.; Jia, S.G. Copper Alloy and its Application, 1st ed.; Chemistry Industry Press: Beijing, China, 2007; pp. 110–122. [Google Scholar]
- Brown, L.M.; Stobbs, W.M. The work-hardening of copper-silica II. Philos. Mag. 1971, 23, 1201–1233. [Google Scholar] [CrossRef]
- Li, G.; Chandra, S.; Rashid, R.A.R.; Palanisamy, S.; Ding, S. Machinability of additively manufactured titanium alloys: A comprehensive review. J. Manuf. Processes 2022, 75, 72–99. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Kamil, M.P.; Fatimah, S.; Nashrah, N.; Ko, Y.G. Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Prog. Mater. Sci. 2020, 112, 100663. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Liu, C.; Liang, P.; Mitsuzaki, N.; Chen, Z. Ti(OBu)4 and cobalt iron oxide Co–modi fied hematite nanoparticles synthesized by a facile anodic electrodeposition for highly efficient water oxidation. J Alloys Compd. 2018, 767, 52–60. [Google Scholar] [CrossRef]
- Lei, Q.; Li, S.Y.; Zhu, J.L.; Xiao, Z.; Zhang, F.F.; Li, Z. Microstructural evolution, phase transition, and physics properties of a high strength Cu-Ni-Si-Al alloy. Mater. Charact. 2019, 147, 315–323. [Google Scholar] [CrossRef]
- Lei, Q.; Li, Z.; Dai, C.; Wang, J.; Chen, X.; Xie, J.M.; Yang, W.W.; Chen, D.L. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys. Mater. Sci. Eng. A 2013, 572, 65–74. [Google Scholar] [CrossRef]
- Gladman, T. Precipitation hardening of metals. Mater. Sci. Technol. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E.; Tanner, L.E. The Be-Cu (beryllium-copper) system. Bull. Alloy. Phase Diagr. 1989, 8, 269–282. [Google Scholar] [CrossRef]
- Wang, W.; Kang, H.J.; Chen, Z.N.; Chen, Z.J.; Zou, C.L.; Li, R.G. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys. Mater. Sci. Eng. A 2016, 673, 378–390. [Google Scholar] [CrossRef]
- Tang, Y.C.; Kang, Y.L.; Yue, L.J.; Jiao, X.L. Precipitation behavior of Cu-1.9Be-0.3Ni-0.15Co alloy during aging. Acta Metall. Sin. 2015, 28, 307–315. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Satoh, Y.; Yoshiie, T.; Mori, H.; Kiritani, M. Deformation mechanisms in tensile fracture of Al foils containing Si precipitates. Mater. Sci. Eng. A 2003, 350, 44–52. [Google Scholar] [CrossRef]
- Goto, M.; Yamamoto, T.; Han, S.Z.; Utsunomiya, T.; Kim, S.; Kitamura, J.; Ahn, J.H.; Lim, S.H.; Lee, J. Simultaneous increase in electrical conductivity and fatigue strength of Cu-Ni-Si alloy by utilizing discontinuous precipitates. Mater. Lett. 2021, 288, 129353. [Google Scholar] [CrossRef]
- Monzen, R.; Hasegawa, T.; Watanabe, C. Effect of external stress on discontinuous precipitation in a Cu-2.1 wt.% Be alloy. Philos. Mag. 2010, 90, 1347–1358. [Google Scholar] [CrossRef]
- Cheng, L.M.; Poole, W.J.; Embury, J.D.; Lloyd, D.J. The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metall. Mater. Trans. A 2003, 34, 2473–2481. [Google Scholar] [CrossRef]
- Chemingui, M.; Khitouni, M.; Jozwiak, K.; Mesmacque, G.; Kolsi, A. Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70°C and 135 °C. Mater. Des. 2010, 31, 3134–3139. [Google Scholar] [CrossRef]
- Rioja, R.J.; Laughlin, D.E. The sequence of precipitation in Cu-2% Be alloys. Acta Metall. 1980, 28, 1301–1313. [Google Scholar] [CrossRef]
- Shimizu, K.; Mikami, Y.; Mitani, H.; Otsuka, K. Electron microscopy study of the precipitation processes in Cu-2 wt% Be alloy. Trans. Jpn. Inst. Met. 1971, 12, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Bonfield, W.; Edwards, B.C. Precipitation hardening in Cu 1.81 wt% Be 0.28 wt% Co. J. Mater. Sci. 1974, 9, 398–408. [Google Scholar] [CrossRef]
- Monzen, R.; Okawarab, S.; Watanabe, C. Stress-assisted nucleation and growth of γ″and γ′ precipitates in a Cu-1.2 wt.% Be-0.1 wt.% Co alloy aged at 320 °C. Philos. Mag. 2012, 92, 1826–1843. [Google Scholar] [CrossRef] [Green Version]
- Holzapfel, C.; Schäf, W.; Marx, M. Interaction of cracks with precipitates and grain boundaries: Understanding crack growth mechanisms through focused ion beam tomography. Scr. Mater. 2007, 56, 697–700. [Google Scholar] [CrossRef]
- Soisson, F.; Barbu, A.; Martin, G. Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation. Acta Mater. 1996, 44, 3789–3800. [Google Scholar] [CrossRef]
- Sakai, T.; Miura, H.; Iwai, T.; Muramatsu, N. Dynamic Recrystallization of a Commercial Cu-Be-Co Alloy during Hot Deformation. J. Jpn. Inst. Met. 1993, 57, 1390–1396. [Google Scholar] [CrossRef] [Green Version]
- Donoso, E.; Varschavsky, A. Microcalorimetric evaluation of precipitation in Cu-2Be-0.2Mg. J. Therm. Anal. Calorim. 2001, 63, 249–266. [Google Scholar] [CrossRef]
- Monzen, R.; Seo, T.; Sakai, T.; Watanabe, C. Precipitation processes in a Cu-0.9mass% Be single crystal. Mater. Trans. 2006, 47, 2925–2934. [Google Scholar] [CrossRef] [Green Version]
Alloy | Ni | Co | Be | Al | Fe | Si |
---|---|---|---|---|---|---|
C17200 (Standard) | ≥0.2 | 1.8–2.0 | ≤0.2 | Fe + Ni + Co ≤ 0.6 | ≤0.2 | |
C17200 (Tested) | <0.01 | 0.22 | 2.04 | 0.034 | 0.038 | 0.056 |
QBe2.0 (Standard) | 0.2–0.5 | / | 1.8–2.1 | ≤0.15 | ≤0.15 | ≤0.15 |
QBe2.0 (Tested) | 0.23 | 0.042 | 1.87 | 0.044 | 0.066 | 0.064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, J.; Zhang, Y.; Lv, C.; Li, T.; Zhang, J.; Hui, S.; Peng, L.; Huang, G.; Xie, H.; et al. Comparison of the Mechanical Properties and Microstructures of QB2.0 and C17200 Alloys. Materials 2022, 15, 2570. https://doi.org/10.3390/ma15072570
Wang Z, Li J, Zhang Y, Lv C, Li T, Zhang J, Hui S, Peng L, Huang G, Xie H, et al. Comparison of the Mechanical Properties and Microstructures of QB2.0 and C17200 Alloys. Materials. 2022; 15(7):2570. https://doi.org/10.3390/ma15072570
Chicago/Turabian StyleWang, Zheng, Jiang Li, Yi Zhang, Chuanming Lv, Ting Li, Jiaqi Zhang, Songxiao Hui, Lijun Peng, Guojie Huang, Haofeng Xie, and et al. 2022. "Comparison of the Mechanical Properties and Microstructures of QB2.0 and C17200 Alloys" Materials 15, no. 7: 2570. https://doi.org/10.3390/ma15072570
APA StyleWang, Z., Li, J., Zhang, Y., Lv, C., Li, T., Zhang, J., Hui, S., Peng, L., Huang, G., Xie, H., & Mi, X. (2022). Comparison of the Mechanical Properties and Microstructures of QB2.0 and C17200 Alloys. Materials, 15(7), 2570. https://doi.org/10.3390/ma15072570