Plasma Oscillatory Pressure Sintering of Mo-9Si-8B Alloy with ZrB2 Addition
Abstract
:1. Introduction
2. Materials and Experimental Procedure
3. Results and Discussion
3.1. XRD and Microstructural Features of Alloy via Plasma Oscillation Sintering
3.2. Porosity and Density Evaluation
3.3. Fracture Toughness and Hardness Evaluation
3.4. Oxidation Behavior of Mo-Si-B Alloy at 1300 ℃
4. Conclusions
- (1)
- On the basis of fine-grain technology (9 Hz oscillatory frequency), the doping of ZrB2 can refine its structure and enable it to reach half the size of the undoped alloy. At the same time, the apparent porosities of the doped alloys were all controlled below 0.7%, reflecting the characteristics of high density.
- (2)
- Doping ZrB2 can improve the hardness and fracture toughness of the alloy, and it will continue to increase with increases in the doping amount. This was the effect not only of fine-grain strengthening, but also of ZrB2 purifying the grain boundary and improving the intercrystalline bonding force.
- (3)
- The non-doped oscillating sintered alloy (0, 3, 6, 9 Hz) and the alloy doped with ZrB2 (0.5 wt%, 1.5 wt%, 2.5 wt%: 9 Hz) were subjected to cyclic oxidation experiments at 1300 °C. The experimental results show that as the oscillatory frequency increased, the oxidation resistance was improved, and the mass loss of the alloy doped with ZrB2 was much better than that of the undoped alloy (mass loss was reduced by at least 80.3%), indicating that the use of oscillatory sintering technology (9 Hz) and the alloy doped with ZrB2 can effectively block oxygen invasion, greatly improving antioxidant performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schneibel, J.H.; Kramer, M.J.; Easton, D.S. A Mo-Si-B intermetallic alloy with a continuous α-Mo matrix. Scr. Mater. 2002, 46, 217–221. [Google Scholar] [CrossRef]
- Schneibel, J.H.; Kruzie, J.J.; Ritchie, R.O. Mo-Si-B Alloy Development; Oak Ridge National Lab.: Oak Ridge, TN, USA; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2003. [Google Scholar]
- Sturm, D.; Heilmaier, M.; Schneibel, J.H.; Jéhanno, P.; Skrotzki, B.; Saage, H. The influence of silicon on the strength and fracture toughness of molybdenum. Mater. Sci. Eng. A 2007, 463, 107–114. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.J.; Jiang, F.; Ding, X.D.; Sun, Y.J.; Sun, J.; Ma, E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 2013, 12, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Lemberg, J.A.; Ritchie, R.O. Mo-Si-B Alloys for Ultrahigh-Temperature Structural Applications. Adv. Mater. 2012, 24, 3445–3480. [Google Scholar] [CrossRef]
- Krüger, M.; Schliephake, D.; Jain, P. Effects of Zr additions on the microstructure and the mechanical behavior of PM Mo-Si-B alloys. JOM 2013, 65, 301–306. [Google Scholar] [CrossRef]
- Li, R.; Li, B.; Chen, X.; Wang, J.; Wang, T.; Gong, Y.; Ren, S.; Zhang, G. Variation of phase composition of Mo-Si-B alloys induced by boron and their mechanical properties and oxidation resistance. Mater. Sci. Eng. A 2019, 749, 196–209. [Google Scholar] [CrossRef]
- Krüger, M.; Jain, P.; Kumar, K.S. Correlation between microstructure and properties of fine grained Mo-Mo3Si-Mo5SiB2 alloys. Intermetallics 2014, 48, 10–18. [Google Scholar] [CrossRef]
- Yang, Y.; Bei, H.; Tiley, J. Re effects on phase stability and mechanical properties of MoSS+Mo3Si+Mo5SiB2 alloys. J. Alloys Compd. 2013, 556, 32–38. [Google Scholar] [CrossRef]
- Choe, H.; Schneibel, J.H.; Ritchie, R.O. On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C). Metall. Mater. Trans. A 2003, 34, 225–239. [Google Scholar] [CrossRef]
- Yan, J.; Kang, R.; Tang, X.; Wang, Y.; Qiu, J. Effect of ZrO2(Y2O3) content on mechanical properties of Mo-12Si-8.5B-ZrO2(Y2O3) composites with bimodal grain-size distribution. Acta Mater. Compos. Sin. 2021, 38, 3747–3756. (In Chinese) [Google Scholar]
- Schneibel, J.H.; Kramer, M.J.; Ünal, Ö. Processing and mechanical properties of a molybdenum silicide with the composition Mo-12Si-8.5B (at.%). Intermetallics 2001, 9, 25–31. [Google Scholar] [CrossRef]
- Zhu, T.; Xie, Z.; Han, Y.; Li, S.; An, D.; Luo, X. Improved mechanical properties of Al2O3-25 vol% SiCw composites prepared by oscillatory pressure sintering. Ceram. Int. 2017, 43, 15437–15441. [Google Scholar] [CrossRef]
- Li, J.; Fan, J.; Yuan, Y.; Liu, J.; Zhao, K.; Liu, D.; Xie, Z.; An, L. Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic. Ceram. Int. 2020, 46, 13240–13243. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, C.; Ding, X.; Li, X.; Li, B. Microstructure and properties of Mo-Si-B alloy fabricated via novel technology: Plasma Oscillatory Pressure Sintering. J. Alloys Compd. 2021, 887, 161274. [Google Scholar] [CrossRef]
- Krüger, M.; Kauss, O.; Naumenko, K. The potential of mechanical alloying to improve the strength and ductility of Mo-9Si-8B-1Zr alloys-experiments and simulation. Intermetallics 2019, 113, 106558. [Google Scholar] [CrossRef]
- Lee, G.C.; Noh, H.; Yeom, H.; Jo, H.; Kim, T.K.; Kim, M.; Sridharan, K.; Park, H.S. Zirconium-silicide coating on zircaloy-4 substrate for accident tolerance: Effects on oxidation resistance and boiling. Ann. Nucl. Energy 2019, 126, 350–358. [Google Scholar]
- Astapov, A.N.; Lifanov, I.P.; Prokofiev, M.V. High-Temperature Interaction in the ZrSi2-ZrSiO4 System and Its Mechanism. Russ. Metall. (Met.) 2019, 2019, 640–646. [Google Scholar] [CrossRef]
- Liu, L.; Shi, C.; Zhang, C. Microstructure, microhardness and oxidation behavior of Mo-Si-B alloys in the Moss+Mo2B+Mo5SiB2 three phase region. Intermetallics 2020, 116, 106618. [Google Scholar] [CrossRef]
- Wang, J.; Luo, R.; Cui, G. MoSi2-modified Cf/SiC composites with enhanced mechanical performance and oxidation resistance. Corros. Sci. 2019, 160, 108173. [Google Scholar] [CrossRef]
- Han, J.S.; Ha, S.; Johnson, J.L. Grain size optimization for nanoscale tungsten carbide cobalt using master sintering curve model. Int. J. Refract. Met. Hard Mater. 2018, 72, 306–314. [Google Scholar] [CrossRef]
- Wang, J.; Ren, S.; Li, R.; Chen, X.; Li, B.; Wang, T.; Zhang, G. Microstructure and improved mechanical properties of ultrafine-grained Mo-12Si-8.5B (at.%) alloys with addition of ZrB2. Prog. Nat. Sci. Mater. Int. 2018, 28, 371–377. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Zhu, T.; Wu, W.; An, D.; Hu, F.; Zhai, F.; Xie, Z. Enhanced toughness and reliability of Si3N4-SiCw composites under oscillatory pressure sintering. Ceram. Int. 2018, 44, 12169–12173. [Google Scholar] [CrossRef]
- Yang, T.; Guo, X. Oxidation behavior of Zr-Y alloyed Mo-Si-B based alloys. Int. J. Refract. Met. Hard Mater. 2020, 88, 105200. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Li, R. Improved oxidation resistance of Mo-12Si-8.5B composite at 1400 °C due to development of Zr-rich borosilicate scale. Ceram. Int. 2019, 45, 3111–3117. [Google Scholar] [CrossRef]
Mo-9Si-8B (at.%) | MSB_0ZrB2 | MSB_0.5ZrB2 | MSB_1.5ZrB2 | MSB_2.5ZrB2 |
---|---|---|---|---|
Content (wt%) | 0 | 0.5 | 1.5 | 2.5 |
Pressure (MPa) | 40 ± 5 | 40 ± 5 | 40 ± 5 | 40 ± 5 |
Frequency (Hz) | 9 | 9 | 9 | 9 |
Sample Number | MSB_0.5ZrB2 | MSB_1.5ZrB2 | MSB_2.5ZrB2 |
---|---|---|---|
Size of indentation (μm) | 255.45 ± 4.3 | 250.35 ± 2.6 | 243.37 ± 4.2 |
Size of crack length (μm) | 303.85 ± 5.8 | 390.79 ± 2.4 | 287.01 ± 5.3 |
Kc (MPa ) | 11.31 | 11.77 | 12.17 |
Average Depth (μm) | D60min | D900min | Average Depth (μm) | D60min | D900min |
---|---|---|---|---|---|
MSB_0ZrB2 | 42.8 | 85.5 | MSB_1.5ZrB2 | 15.6 | 57.2 |
MSB_0.5ZrB2 | 25.1 | 68.5 | MSB_2.5ZrB2 | 12.7 | 40.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Guo, Z.; Li, X.; Li, Z.; Li, X. Plasma Oscillatory Pressure Sintering of Mo-9Si-8B Alloy with ZrB2 Addition. Materials 2022, 15, 2387. https://doi.org/10.3390/ma15072387
Ding X, Guo Z, Li X, Li Z, Li X. Plasma Oscillatory Pressure Sintering of Mo-9Si-8B Alloy with ZrB2 Addition. Materials. 2022; 15(7):2387. https://doi.org/10.3390/ma15072387
Chicago/Turabian StyleDing, Xiangyu, Zhenping Guo, Xiangrong Li, Zhuoyue Li, and Xin Li. 2022. "Plasma Oscillatory Pressure Sintering of Mo-9Si-8B Alloy with ZrB2 Addition" Materials 15, no. 7: 2387. https://doi.org/10.3390/ma15072387
APA StyleDing, X., Guo, Z., Li, X., Li, Z., & Li, X. (2022). Plasma Oscillatory Pressure Sintering of Mo-9Si-8B Alloy with ZrB2 Addition. Materials, 15(7), 2387. https://doi.org/10.3390/ma15072387