Design of Fly Ash-Based Alkali-Activated Mortars, Containing Waste Glass and Recycled CDW Aggregates, for Compressive Strength Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Precursors
2.1.2. Waste Glass
2.1.3. Aggregates
2.1.4. Water-Reducing Agent
2.2. Mix Design
2.2.1. Initial Testing Stage
2.2.2. Waste Glass Content Optimization Stage
- one set in which the addition of increasing amounts of waste glass (namely, 1%, 4% and 7% of the weight of the precursors) was compensated by a reduction in sodium silicate (plus proportionate adjustments in the fly ash, cement and aggregates content in order to maintain overall weight proportions);
- another group in which the same waste glass additions were matched by the increase in sodium hydroxide and decrease in sodium silicate (in this case, only cement and fly ash contents were impacted by the waste addition).
2.3. Specimen Preparation
2.4. Test Methodology
3. Results and Discussion
3.1. Initial Testing Stage
3.2. Waste Glass Content Optimization Stage
4. Conclusions
- It is possible to obtain 7-day compressive strength values of about 28 MPa using ambient-cured fly ash-based mortars. Nevertheless, in the case ordinary Portland cement is used, large amounts of this material (50% of the binder) and alkaline activators must be used to produce mixtures with moderate potential for structural use.
- The implementation of a 24-h cycle of heat curing at a temperature of 80 °C allows an improved strength performance to be obtained with lower cement contents (below 25%).
- The utilization of glass waste powder revealed some potential in offsetting a decrease in the content of the most carbon intensive products of the mixtures (sodium silicate and cement). In fact, the mixture with the best 28-day compressive strength results (M11) possessed a 1% glass powder content (in relation to the binder weight) and displayed a 28-day compressive strength of 31.4 MPa.
- Although superplasticizers were used, the highest compressive strength results pertained to compositions with low workability.
- In most samples, the strength results of the fly ash-based mortars displayed high dispersion, and wide 95% confidence intervals were observed. This phenomenon was more prominent in heat-cured samples.
- A one-way ANOVA test showed that, for a 28-day curing period, the addition of glass wastes had a statistically significant effect on compressive strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COM 398 Final/2. Towards a Circular Economy: A Zero Waste Programme for Europe; European Comission: Brussels, Belgium, 2014.
- COM 595 Final. Proposal for a Directive of the European Parliament and of the Council amending Directive 2008/98/EC on Waste; European Comission: Brussels, Belgium, 2015.
- Miraldo, S.; Lopes, S.; Pacheco-Torgal, F.; Lopes, A. Advantages and shortcomings of the utilization of recycled wastes as aggregates in structural concretes. Constr. Build. Mater. 2021, 298, 123729. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. Constr. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Flower, D.J.M.; Sanjayan, J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007, 12, 282–288. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, C.; Liang, Y.; Luo, J.; Wang, X.; Feng, Y.; Li, Y.; Wang, Q.; Abomohra, A.E.-F. Life Cycle Assessment and Impact Correlation Analysis of Fly Ash Geopolymer Concrete. Materials 2021, 14, 7375. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Durability and Environmental Performance of Alkali-Activated Tungsten Mine Waste Mud Mortars. J. Mater. Civ. Eng. 2010, 22, 897–904. [Google Scholar] [CrossRef]
- Fu, Y.; Cai, L.; Yonggen, W. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr. Build. Mater. 2011, 25, 3144–3148. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A. Alkali-aggregate reaction in activated fly ash systems. Cem. Concr. Res. 2007, 37, 175–183. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; Morales-Estrella, R.; Xie, X.; Tong, X. Chemical forms of lead immobilization in alkali-activated binders based on mine tailings. Cem. Concr. Compos. 2018, 92, 198–204. [Google Scholar] [CrossRef]
- Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 2012, 29, 89–104. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Alkali-activated based concrete. In Eco-Efficient Concrete; Woodhead Publishing: Sawston, UK, 2013; pp. 439–487. ISBN 9780857094247. [Google Scholar]
- Atiş, C.D.; Görür, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E. Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 2015, 96, 673–678. [Google Scholar] [CrossRef]
- Miraldo, S.; Lopes, S.; Pacheco-Torgal, F.; Lopes, A. Structural Performance of Waste-based Reinforced Alkali-activated Concrete. In Handbook of Advances in Alkali-Activated Concrete; Pacheco-Torgal, F., Chindaprasirt, P., Ozbakkaloglu, T., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2021; pp. 369–399. ISBN 9780323854696. [Google Scholar]
- Garcia-Lodeiro, I.; Fernandez-Jimenez, A.; Palomo, A. Hybrid Alkaline Cements: Bentonite-Opc Binders. Minerals 2018, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Waqas, R.M.; Butt, F.; Danish, A.; Alqurashi, M.; Mosaberpanah, M.A.; Masood, B. Influence of Bentonite on Mechanical and Durability Properties and Recycled Aggregates. Materials 2021, 14, 7790. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Jiménez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Barboza-Chavez, A.C.; Gómez-Zamorano, L.Y.; Acevedo-Dávila, J.L. Synthesis and characterization of a hybrid cement based on fly ash, metakaolin and portland cement clinker. Materials 2020, 13, 1084. [Google Scholar] [CrossRef] [Green Version]
- Eurostat Generation of Waste by Waste Category, Hazardousness and NACE Rev. 2 Activity. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 30 December 2021).
- Puertas, F.; Torres-Carrasco, M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem. Concr. Res. 2014, 57, 95–104. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Palomo, J.G.; Puertas, F. Sodium silicate solutions from dissolution of glasswastes. Statistical analysis. Mater. Constr. 2014, 64, e014. [Google Scholar] [CrossRef] [Green Version]
- Torres-Carrasco, M.; Puertas, F. Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 2015, 90, 397–408. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Puertas, F. Waste glass as a precursor in alkaline activation: Chemical process and hydration products. Constr. Build. Mater. 2017, 139, 342–354. [Google Scholar] [CrossRef]
- Zheng, K. Recycled Glass Concrete. In Eco-Efficient Concrete; Woodhead Publishing: Sawston, UK, 2013; pp. 241–270. [Google Scholar]
- Bernal, S.A.; Rodríguez, E.D.; Kirchheim, A.P.; Provis, J.L. Management and valorisation of wastes through use in producing alkali-activated cement materials. J. Chem. Technol. Biotechnol. 2016, 91, 2365–2388. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Ding, Y.; Miraldo, S.; Abdollahnejad, Z.; Labrincha, J.A. Are geopolymers more suitable than Portland cement to produce high volume recycled aggregates HPC? Constr. Build. Mater. 2012, 36, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2015, 99, 59–74. [Google Scholar] [CrossRef]
- Khedmati, M.; Kim, Y.R.; Turner, J.A. Investigation of the interphase between recycled aggregates and cementitious binding materials using integrated microstructural-nanomechanical-chemical characterization. Compos. Part B Eng. 2019, 158, 218–229. [Google Scholar] [CrossRef]
- Nongnuang, T.; Jitsangiam, P.; Rattanasak, U.; Tangchirapat, W.; Suwan, T.; Thongmunee, S. Characteristics of waste iron powder as a fine filler in a high-calcium fly ash geopolymer. Materials 2021, 14, 2515. [Google Scholar] [CrossRef]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [Google Scholar] [CrossRef]
- LNEC E 471-2009. Guia Para Utilização de Agregados Reciclados Grossos em Betões de Ligantes Hidráulicos; LNEC: Lisboa, Portugal, 2009; Volume 9, p. 8.
- Rajamony Laila, L.; Gurupatham, B.G.A.; Roy, K.; Lim, J.B.P. Influence of super absorbent polymer on mechanical, rheological, durability, and microstructural properties of self-compacting concrete using non-biodegradable granite pulver. Struct. Concr. 2021, 22, E1093–E1116. [Google Scholar] [CrossRef]
- Rajamony Laila, L.; Gurupatham, B.G.A.; Roy, K.; B.P. Lim, J. Effect of super absorbent polymer on microstructural and mechanical properties of concrete blends using granite pulver. Struct. Concr. 2021, 22, E898–E915. [Google Scholar] [CrossRef]
- EN12390. Testing Hardened Concrete—Part 1: Shape, Dimensions and Other Requirements for Specimens and Moulds; CEN-European Committee for Standartization: Brussels, Belgium, 2000.
- NP EN 450-1 Cinzas Volantes Para Betão-Parte 1: Definição, Especificações e Critérios de Conformidade; Instituto Português da Qualidade: Caparica, Portugal, 2012.
- Instituto Português da Qualidade. NP EN 1097-2: Ensaios das Propriedades Mecânicas e Físicas dos Agregados. Parte 2: Métodos Para a Determinação da Resistência à Fragmentação; Instituto Português da Qualidade: Caparica, Portugal, 2011. [Google Scholar]
- Methods of Testing Cement—Part1: Determination of Strength; CEN—European Committee for Standardization: Brussels, Belgium, 2005.
- Zhou, W.; Yan, C.; Duan, P.; Liu, Y.; Zhang, Z.; Qiu, X.; Li, D. A comparative study of high- and low-Al2O3fly ash based-geopolymers: The role of mix proportion factors and curing temperature. Mater. Des. 2016, 95, 63–74. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem. Concr. Compos. 2015, 55, 205–214. [Google Scholar] [CrossRef]
- Shekhovtsova, J.; Zhernovsky, I.; Kovtun, M.; Kozhukhova, N.; Zhernovskaya, I.; Kearsley, E. Estimation of fly ash reactivity for use in alkali-activated cements—A step towards sustainable building material and waste utilization. J. Clean. Prod. 2018, 178, 22–33. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Jiao, Z. Influence of curing on the strength development of calcium-containing geopolymer mortar. Materials 2013, 6, 5069–5076. [Google Scholar] [CrossRef] [PubMed]
- De Vargas, A.S.; Dal Molin, D.C.C.; Masuero, Â.B.; Vilela, A.C.F.; Castro-Gomes, J.; Gutierrez, R.M. Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators. Cem. Concr. Compos. 2014, 53, 341–349. [Google Scholar] [CrossRef]
- Luo, Y.; Li, S.H.; Klima, K.M.; Brouwers, H.J.H.; Yu, Q. Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures. Cem. Concr. Res. 2022, 151, 106649. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Habert, G. Life cycle assessment (LCA) of alkali-activated cements and concretes. Handb. Alkali-Act. Cem. Mortars Concr. 2015, 663–686. [Google Scholar] [CrossRef]
Element | Content (wt.%) |
---|---|
SiO2 | 61.7 |
Al2O3 | 18.64 |
Fe2O3 | 6.81 |
CaO | 1.45 |
Others | 5.94 |
LOI | 5.46 |
Reactive Silica | 39.22 |
Part Diam. < 45 µm | 62.9 |
Blaine Specific Surface (m2/kg) | 257.0 |
SiO2 (wt.%) | Na2O (wt.%) | Al2O3 (wt.%) | H2O (wt.%) |
---|---|---|---|
27.3–28.3 | 8.2–8.6 | <4.0 | 59.1–64.5 |
Sample | FA 1 (%) | CM 2 (%) | SL 3 (%) | Gl 4 (%) | S/H 5 | H 6 (M) | A/B 7 | RA 8 (%) | LP 9 (%) | Ag:B 10 | Sp/B 11 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
MM1 | 60 | 7.5 | 12.5 | 20 | 2 | 10 | 0.7 | 10 | 10 | 3 | 1 |
MM2 | 60 | 25 | 15 | 0 | 2 | 16 | 0.7 | 10 | 10 | 3 | 1 |
MM3 | 50 | 25 | 15 | 10 | 2 | 16 | 0.7 | 10 | 10 | 3 | 1 |
Sample | FA 1 (%) | CM 2 (%) | S/H 3 | H 4 (M) | A/B 5 | RA 6 (%) | LP 7 (%) | Ag:B 8 (%) | Sp/B 9 (%) |
---|---|---|---|---|---|---|---|---|---|
MM4 | 50 | 50 | 1 | 10 | 0.7 | 10 | 10 | 3 | 1 |
MM5 | 50 | 50 | 1 | 16 | 0.7 | 10 | 10 | 3 | 1 |
MM6 | 50 | 50 | 1 | 10 | 0.6 | 10 | 10 | 3 | 1 |
Sample | FA 1 (%) | CM 2 (%) | S/H 3 | H 4 (M) | A/B 5 | RA 6 (%) | LP 7 (%) | Ag:B 8 (%) | Sp/B 9 (%) |
---|---|---|---|---|---|---|---|---|---|
MM7 | 50 | 50 | 2 | 16 | 0.7 | 10 | 0 | 3 | 1 |
MM8 | 50 | 50 | 2 | 16 | 0.6 | 0 | 10 | 3 | 1 |
MM9 | 50 | 50 | 2 | 16 | 0.7 | 10 | 10 | 3 | 1 |
Sample | FA 1 (g) | C 2 (g) | G 3 (g) | H 4 (g) | S 5 (g) | A 6 (g) |
---|---|---|---|---|---|---|
MM10 | 281.3 | 93.8 | 0.0 | 100.0 | 200.0 | 1012.5 |
Sample | ΔFA 1 (%) | ΔC 2 (%) | ΔG 3 (%) | ΔH 4 (%) | ΔS 5 (%) | ΔA 6 (%) |
---|---|---|---|---|---|---|
MM11 | −0.56 | −0.19 | 1.0 | 0 | −1.0 | 0.75 |
MM12 | −2.81 | −0.94 | 4.0 | 0 | −1.0 | 0.75 |
MM13 | −5.06 | −1.69 | 7.0 | 0 | −1.0 | 0.75 |
MM14 | −0.75 | −0.25 | 1.0 | 1.0 | −1.0 | 0 |
MM15 | −3.00 | −1.00 | 4.0 | 1.0 | −1.0 | 0 |
MM16 | −5.25 | −1.75 | 7.0 | 1.0 | −1.0 | 0 |
Sample | FA 1 (%) | CM 2 (%) | Gl 3 (%) | S/H 4 | H 5 (M) | A/B 6 | RA 7 (%) | Ag:B 8 | T 9 (°C) |
---|---|---|---|---|---|---|---|---|---|
MM10 | 75.0 | 25.0 | 0 | 2 | 10 | 0.8 | 10 | 3 | 80 |
MM11 | 71.4 | 23.8 | 1 | 2 | 10 | 0.7 | 10 | 3 | 80 |
MM12 | 60.8 | 20.3 | 4 | 2 | 10 | 0.7 | 10 | 3 | 80 |
MM13 | 50.1 | 16.7 | 7 | 2 | 10 | 0.7 | 10 | 3 | 80 |
Sample | FA 1 (%) | CM 2 (%) | Gl 3 (%) | S/H 4 | H 5 (M) | A/B 6 | RA7 (%) | Ag:B 8 | T 9 (°C) |
---|---|---|---|---|---|---|---|---|---|
MM10 | 75.0 | 25.0 | 0 | 2 | 10 | 0.8 | 10 | 3 | 80 |
MM14 | 71.4 | 23.8 | 1 | 2 | 10 | 0.8 | 10 | 3 | 80 |
MM15 | 60.6 | 20.2 | 4 | 2 | 10 | 0.8 | 10 | 3 | 80 |
MM16 | 49.8 | 16.6 | 7 | 2 | 10 | 0.8 | 10 | 3 | 80 |
Curing Period | Compressive Strength |
---|---|
Short-term (7/8 days) | p-value = 0.378 |
Medium-term (14 days) | p-value = 0.245 |
Long-term (28 days) | p-value = 0.0309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miraldo, S.; Lopes, S.; Lopes, A.V.; Pacheco-Torgal, F. Design of Fly Ash-Based Alkali-Activated Mortars, Containing Waste Glass and Recycled CDW Aggregates, for Compressive Strength Optimization. Materials 2022, 15, 1204. https://doi.org/10.3390/ma15031204
Miraldo S, Lopes S, Lopes AV, Pacheco-Torgal F. Design of Fly Ash-Based Alkali-Activated Mortars, Containing Waste Glass and Recycled CDW Aggregates, for Compressive Strength Optimization. Materials. 2022; 15(3):1204. https://doi.org/10.3390/ma15031204
Chicago/Turabian StyleMiraldo, Sérgio, Sérgio Lopes, Adelino V. Lopes, and Fernando Pacheco-Torgal. 2022. "Design of Fly Ash-Based Alkali-Activated Mortars, Containing Waste Glass and Recycled CDW Aggregates, for Compressive Strength Optimization" Materials 15, no. 3: 1204. https://doi.org/10.3390/ma15031204
APA StyleMiraldo, S., Lopes, S., Lopes, A. V., & Pacheco-Torgal, F. (2022). Design of Fly Ash-Based Alkali-Activated Mortars, Containing Waste Glass and Recycled CDW Aggregates, for Compressive Strength Optimization. Materials, 15(3), 1204. https://doi.org/10.3390/ma15031204