Magnetization Processes in Metallic Glass Based on Iron of FeSiB Type
Abstract
:1. Introduction
- Magnetic susceptibility disaccomodation;
- The phenomenon of magnetization delay with step changes of the constant magnetizing field (the so-called ∆H effect, caused by the directional ordering of the relaxators and fluctuation delays);
- The appearance of additional magnetic losses during their measurement with an alternating magnetic field (apart from the magnetic hysteresis and eddy currents loss);
- Pawlek effect (weak dependence of magnetic permeability versus magnetic field in the area of weak magnetizing fields);
- Perminwar effect (narrowing of the central part of the hysteresis loop caused by the Pawlek effect).
2. Experiment
3. Results
4. Discussion
- Directional arrangement of point relaxators;
- The Zener mechanism, consisting of the directional ordering of pairs of substitution atoms;
- The so-called magnetic diffusion of point defects or foreign atoms;
- Thermally activated dislocation movement;
- Magnetic migratory relaxation related to grain boundaries.
4.1. Magnetoelastic Energy
4.2. Stabilization Energy
4.3. Magnetocrystalline Energy
5. Conclusions
- After the annealing process, microcrystalline Fe and nanocrystalline Fe2B phase with the crystallite size in a range of 144 Å were created.
- Magnetization processes in iron-based amorphous FeSiB alloys mainly depend on stabilization energy of the domain wall motion. In the present paper, the value J/m3 was obtained.
- 5.
- The obtained interaction energy between the spontaneous magnetization vector and relaxators is, in the case of amorphous materials, an order of magnitude higher than for solid solutions in crystalline materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mc Henry, M.E.; Laughlin, D.E. Nano-scale materials development for future magnetic applications. Acta Mater. 2000, 48, 223–238. [Google Scholar] [CrossRef]
- Al-Heniti, S.H. Kinetic study of non-isothermal crystallization in Fe78Si9B13 metallic glass. J. Alloys Compd. 2009, 484, 177–184. [Google Scholar] [CrossRef]
- Stokłosa, Z.; Kwapuliński, P.; Rasek, J.; Badura, G.; Haneczok, G.; Pająk, L.; Kolano-Burian, A. Optimization of soft magnetic properties and crystallization in FeAgNbSiB, FeAgNbB and FeAgCoNbB amorphous alloys. J. Alloys Compd. 2010, 507, 465–469. [Google Scholar] [CrossRef]
- Jeż, B.B.; Postawa, P.; Kalwik, A.; Nabiałek, M.; Błoch, K.; Walters, S.; Sandu, A.V. Migratory Nature of the disaccommodation phenomenon depending on the relaxation time. Acta Phys. Pol. A 2022, 142, 157–159. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, S.Y.; Zhou, W.; Yao, J.; Liu, S.; Lan, S.; Li, Y. Rejuvenation by enthalpy relaxation in metallic glasses. Acta Mater. 2022, 241, 118376. [Google Scholar] [CrossRef]
- Herzer, G. Chapter 3 Nanocrystalline Soft Magnetic Alloys, Handbook of Magnetic Materials; Elsevier Science: Amsterdam, The Netherlands, 1997; Volume 10, pp. 415–462. [Google Scholar]
- Badura, G.; Rasek, J.; Kwapuliński, P.; Stokłosa, Z.; Pająk, L. Crystallisation and optimisation of soft magnetic properties in amorphous FeCuXSi13B9 (X = Mn, Co, Zr)-type alloys. Phys. Stat. Sol. A 2006, 203, 349–357. [Google Scholar] [CrossRef]
- Stokłosa, Z.; Rasek, J.; Kwapuliński, P.; Badura, G.; Haneczok, G. Structural relaxation, crystallization and improvement of magnetic properties effect in Fe–X–Si–B (X = Cu, Zr, Al, V). J. Magn. Magn. Mater. 2006, 304, e700–e702. [Google Scholar] [CrossRef]
- Naohara, T. Ageing-induced soft magnetic properties of an amorphous Fe-Si-B-Nb alloy. Philos. Mag. Lett. 1998, 78, 229–234. [Google Scholar] [CrossRef]
- Naohara, T. Thermomagnetic gravimetry study of crystallization behaviour in amorphous Fe-Si-B-Nb alloys. Philos. Mag. Lett. 1998, 78, 235–239. [Google Scholar] [CrossRef]
- Sahingoz, R.; Erol, M.; Gibbs, M.R.J. Observation of changing of magnetic properties and microstructure of metallic glass Fe78Si9B13 with annealing. J. Magn. Magn. Mater. 2004, 271, 74–78. [Google Scholar] [CrossRef]
- Haneczok, G.; Rasek, J. Free Volume Diffusion and Optimisation of Soft Magnetic Properties in Amorphous Alloys Based on Iron. Defect Diffus. Forum 2004, 224–225, 13–26. [Google Scholar] [CrossRef]
- Stokłosa, Z.; Rasek, J.; Kwapuliński, P.; Haneczok, G.; Chrobak, A.; Lelątko, J.; Pająk, L. Influence of boron contents on crystallization and magnetic properties of ternary FeNbB amorphous alloys. Phys. Stat. Solidi A 2010, 207, 452–456. [Google Scholar] [CrossRef]
- Kwapuliński, P.; Haneczok, G. Formation of the relaxed amorphous phase in iron-based amorphous alloys monitored by magnetic relaxation techniques. IEEE Trans. Magn. 2022, 58, 2000507. [Google Scholar] [CrossRef]
- Stokłosa, Z.; Rasek, J.; Kwapuliński, P.; Haneczok, G.; Pająk, L. Structural relaxation and Crystallisation in Fe-Cr-Si-B and Fe-Cu-Cr-Si-B amorphous alloys. Acta Phys. Pol. A 2002, 102, 273–281. [Google Scholar] [CrossRef]
- Morish, A.H. The Physical Principles of Magnetism; John Willey and Sons Inc.: New York, NY, USA, 2001. [Google Scholar]
- Kronmüller, H. Theory of magnetic after-effects in ferromagnetic amorphous alloys. Phil. Mag. B 1983, 48, 127–150. [Google Scholar] [CrossRef]
- Kronmüller, H. Theory of the coercive field in amorphous ferromagnetic alloys. J. Magn. Magn. Mater. 1981, 24, 159. [Google Scholar] [CrossRef]
- Badura, G.; Rasek, J.; Stokłosa, Z.; Kwapuliński, P.; Haneczok, G.; Lelątko, J.; Pająk, L. Soft magnetic properties enhancement effect and crystallization processes in Fe78−xNbxSi13B9 (x = 0, 2, 4) amorphous alloys. J. Alloys Compd. 2007, 436, 43–50. [Google Scholar] [CrossRef]
- Bilmayer, G. Density-Functional Theory of Magnetism. In Handbook of Magnetism and Advanced Magnetic Materials; Kronmüller, H., Parkin, S., Eds.; Wiley: Hoboken, NJ, USA, 2007; Volume 3. [Google Scholar]
- Górecki, T.; Kostrzewa, M. Debye Temperature for Liquid Metals and the Vacancy Model of Melting. Acoustica 1993, 77, 293–299. [Google Scholar]
- McCusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Louër, D.; Scardi, P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999, 32, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Karolus, M. Applications of Rietveld refinement in Fe–B–Nb alloy structure studies. J. Mater. Process. Technol. 2006, 175, 246–250. [Google Scholar] [CrossRef]
- Ciurzyńska, W. Magnetic Relaxations in Structurally Ordered and Disordered Transition Metal Alloys; Częstochowa University of Technology: Częstochowa, Poland, 2002. (In Polish) [Google Scholar]
- Zbroszczyk, J.; Ciurzyńska, W. The magnetic after-effect in amorphous and nanocrystalline Fe–Cu–Nb–Si–B alloys. J. Phys. Condens. Matter. 1997, 9, 4303–4318. [Google Scholar] [CrossRef]
- Stokłosa, Z. Magnetization Processes and Magnetic Loss in Iron Based Amorphous Soft Magnetic Materials; University of Silesia: Katowice, Poland, 2012. (In Polish) [Google Scholar]
- Bozorth, M.R. Ferromagnetism; IEEE Magnetics Society: New York, NY, USA, 1993. [Google Scholar]
- O’Handley, R.C. Modern Magnetic Materials, Principles and Applications; Wiley–Interscience Publication, John Wiley and Sons Inc.: New York, NY, USA, 2000. [Google Scholar]
- Inoue, A.; Hasimoto, K. Amorphous and Nanocrystalline Materials; Springer: New York, NY, USA, 2001. [Google Scholar]
- Rossiter, P.L. The Electrical Resistivity of Metals and Alloys; Cambridge Uniwersity Press: Cambridge, UK, 1987. [Google Scholar]
- Kronmüller, H. Recent developments in high-tech magnetic materials. J. Magn. Magn. Mater. 1995, 140–144, 25–28. [Google Scholar] [CrossRef]
- Rasek, J. Amorphous Materials and Their Properties. In The Field of Crystallography and Materials Science; University of Silesia: Katowice, Poland, 2002. (In Polish) [Google Scholar]
- Ślawka-Waniewska, A. Interface magnetism in Fe-based nanocrystalline alloys. J. De Phys. 1998, 8, 11–18. [Google Scholar]
- Herzer, G.; Varga, L.L. Exchange softening in nanocrystalline alloys. J. Magn. Magn. Mater. 2000, 215–216, 506–512. [Google Scholar]
- Herzer, G. Anisotropies in soft magnetic nanocrystalline alloys. J. Magn. Magn. Mater. 2005, 294, 99–106. [Google Scholar] [CrossRef]
- Haneczok, G.; Ilczuk, J.; Kuśka, R.; Moroń, J.W.; Rasek, J. The formation of carbon atom pairs in alpha iron after quenching from high temperatures. Acta Phys. Pol. A 1977, 51, 399–406. [Google Scholar]
Fe | Fe2B | ||||||
---|---|---|---|---|---|---|---|
Theoretical (ICDD PDF4 + Card: 01-087-0721) | Refined (RR) a [Å] | Crystallite Size D [Å] | Lattice Strain η [%] | Theoretical (ICDD PDF4 + Card: 96-101-0475) | Refined (RR) a/c [Å] | Crystallite Size D [Å] | Lattice Strain η [%] |
a = 2.8662 Å Space Group: Im-3m Crystallographic System: Cubic | a = 2.8529(2) | >1000 | 0.12 | a = 5.0990 Å c = 4.2400 Å Space Group: I-42m Crystallographic System: Tetragonal | 5.1196(3) 4.2131(9) | 144 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stokłosa, Z.; Kwapuliński, P.; Karolus, M. Magnetization Processes in Metallic Glass Based on Iron of FeSiB Type. Materials 2022, 15, 9015. https://doi.org/10.3390/ma15249015
Stokłosa Z, Kwapuliński P, Karolus M. Magnetization Processes in Metallic Glass Based on Iron of FeSiB Type. Materials. 2022; 15(24):9015. https://doi.org/10.3390/ma15249015
Chicago/Turabian StyleStokłosa, Zbigniew, Piotr Kwapuliński, and Małgorzata Karolus. 2022. "Magnetization Processes in Metallic Glass Based on Iron of FeSiB Type" Materials 15, no. 24: 9015. https://doi.org/10.3390/ma15249015
APA StyleStokłosa, Z., Kwapuliński, P., & Karolus, M. (2022). Magnetization Processes in Metallic Glass Based on Iron of FeSiB Type. Materials, 15(24), 9015. https://doi.org/10.3390/ma15249015