Surfactant-Assisted Synthesis of Micro/Nano-Structured LiFePO4 Electrode Materials with Improved Electrochemical Performance
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Physiochemical Characterization of LiFePO4
2.3. Electrochemical Measurement
3. Results and Discussion
3.1. Characterization of Structure and Morphology
3.2. Formation Mechanism
3.3. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.P.; Lv, D.; Chen, J.; Zhang, Y.H.; Shi, F.N. Review on defects and modification methods of LiFePO4 cathode material for lithium-ion batteries. Energ. Fuel. 2022, 36, 1232–1251. [Google Scholar] [CrossRef]
- Huang, C.Y.; Kuo, T.R.; Yougbaré, S.; Lin, L.Y. Design of LiFePO4 and porous carbon composites with excellent High-Rate charging performance for Lithium-ion secondary battery. J. Colloid Interf. Sci. 2022, 607, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Neiber, R.R.; Park, J.; Soomro, R.A.; Greene, G.W.; Mazari, S.A.; Seo, H.Y.; Lee, J.H.; Shon, M.; Chang, D.W.; et al. Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery. Chem. Eng. J. 2022, 43, 133993. [Google Scholar] [CrossRef]
- Liang, J.L.; Gan, Y.H.; Yao, M.L.; Li, Y. Numerical analysis of capacity fading for a LiFePO4 battery under different current rates and ambient temperatures. Int. J. Heat Mass Tran. 2021, 165, 120615. [Google Scholar] [CrossRef]
- Lin, J.; Sun, Y.H.; Lin, X.M. Metal-organic framework-derived LiFePO4 cathode encapsulated in O, F-codoped carbon matrix towards superior lithium storage. Nano Energy 2022, 91, 106655. [Google Scholar] [CrossRef]
- Sanchez, J.S.; Xu, J.; Xia, Z.Y.; Sun, J.H.; Asp, L.E.; Palermo, V. Electrophoretic coating of LiFePO4/graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries. Compos. Sci. Technol. 2021, 208, 108768. [Google Scholar] [CrossRef]
- Zhang, H.W.; Li, J.Y.; Luo, L.Q.; Zhao, J.; He, J.Y.; Zhao, X.X.; Liu, H.; Qin, Y.B.; Wang, F.Y.; Song, J.J. Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries. J. Alloys Compd. 2021, 876, 160210. [Google Scholar] [CrossRef]
- Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta 2000, 45, 2461–2466. [Google Scholar] [CrossRef]
- Wang, J.W.; Liu, J.; Yang, G.L.; Zhang, X.F.; Yan, X.D.; Pan, X.M.; Wang, R.S. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim. Acta 2009, 54, 6451–6454. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, X.B.; Cheng, Y.L.; Wu, Y.M.; Wang, L.M. Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu0.95V2O5 nanoribbons: High capacity cathode material for rechargeable Li-ion batteries. Chem. Commun. 2011, 47, 5250–5252. [Google Scholar] [CrossRef]
- Ma, D.L.; Cao, Z.Y.; Wang, H.G.; Huang, X.L.; Wang, L.M.; Zhang, X.B. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538. [Google Scholar] [CrossRef]
- Wang, H.G.; Ma, D.L.; Huang, Y.; Zhang, X.B. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for Lithium-ion batteries. Chem. Eur. J. 2012, 18, 8987–8993. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, L.; Zhang, K.Y.; Liang, F.; Yao, Y.C.; Kong, L.X. High performance of LiFePO4 with nitrogen and phosphorus dual-doped carbon layer for lithium-ion batteries. J. Alloys Compd. 2021, 890, 161617. [Google Scholar] [CrossRef]
- Luo, Z.H.; Zhang, R.L.; Xu, F.F.; Gao, Y.; Zhao, J.S. Structure and electrochemical performance of LiFePO4 cathode materials modified with carbon coating and metal doping. J. Solid State Electrochem. 2022, 26, 1655–1665. [Google Scholar]
- Somo, T.R.; Mabokela, T.E.; Teffu, D.M.; Sekgobela, T.K.; Ramogayana, B.; Hato, M.J.; Modibane, K.D. A comparative review of metal oxide surface coatings on three families of cathode materials for lithium ion batteries. Coatings 2021, 11, 744. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, W.; Bao, Y.Q.; Guan, M.Y. Influence of the LiFePO4/C coating on the electrochemical performance of Nickel-rich cathode for lithium-ion batteries. J. Alloys Compd. 2022, 898, 162848. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, K.; Zhang, H.D.; Zhu, B.F. Effect of Ru doping on the properties of LiFePO4/C cathode materials for lithium-ion batteries. ACS Omega 2021, 6, 14122–14129. [Google Scholar] [CrossRef]
- Xin, Y.M.; Xu, H.Y.; Ruan, J.H.; Li, D.C.; Wang, A.G.; Sun, D.S. A Review on application of LiFePO4 based composites as electrode materials for Lithium ion batteries. Int. J. Electrochem. Sci. 2021, 16, 210655. [Google Scholar] [CrossRef]
- Zhang, B.F.; Xu, Y.L.; Wang, J.; Ma, X.N.; Hou, W.Q.; Xue, X. Electrochemical performance of LiFePO4/graphene composites at low temperature affected by preparation technology. Electrochim. Acta 2021, 368, 137575. [Google Scholar] [CrossRef]
- Peng, L.L.; Zhao, Y.; Ding, Y.; Yu, G.H. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries. Chem. Commun. 2014, 50, 9569. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.L.; Liu, B.R.; Yu, G.H. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett. 2014, 14, 2849–2853. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, W.K.; Huang, H.; Gan, Y.P.; Tian, J.; Tao, X.Y. Self-assembled mesoporous LiFePO4 with hierarchical spindle-like architectures for high-performance lithium-ion batteries. J. Power Sources 2011, 196, 5651–5658. [Google Scholar] [CrossRef]
- Li, Y.C.; Xing, B.Y.; Liang, P.C.; Zhang, H.S.; Zhou, K.Y.; Ma, J.J.; Fan, S.M.; Yang, S.T. Synthesis of graphene-supported LiFePO4/C materials via solid-state method using LiFePO4 (OH) as precursors. J. Solid State Electrochem. 2022, 26, 2595–2600. [Google Scholar] [CrossRef]
- Bezerra, C.A.G.; Davoglio, R.A.; Biaggio, S.R.; Bocchi, N.; Rocha-Filho, R.C. High-purity LiFePO4 prepared by a rapid one-step microwave-assisted hydrothermal synthesis. J. Mater. Sci. 2021, 56, 10018–10029. [Google Scholar] [CrossRef]
- Sellami, M.; Barre, M.; Dammak, M.; Toumi, M. Local structure, thermal, optical and electrical properties of LiFePO4 polycrystalline synthesized by Co-precipitation method. Braz. J. Phys. 2021, 51, 1521–1528. [Google Scholar] [CrossRef]
- Alsamet, M.A.M.M.; Burgaz, E. Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods. Electrochim. Acta 2021, 367, 137530. [Google Scholar] [CrossRef]
- Cao, H.; Wen, L.; Guo, Z.Q.; Piao, N.; Hu, G.J.; Wu, M.J.; Li, F. Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures. New Carbon Mater. 2022, 37, 46–58. [Google Scholar] [CrossRef]
- Ren, X.; Li, Z.F.; Cao, J.R.; Tian, S.Y.; Zhang, K.C.; Guo, J.L.; Wen, L.Z.; Liang, G.C. Enhanced rate performance of the mortar-like LiFePO4/C composites combined with the evenly coated of carbon aerogel. J. Alloys Compd. 2021, 867, 158776. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, G.S.; Xie, J.; Zhao, X.B. Oleic acid-assisted preparation of LiMnPO4 and its improved electrochemical performance by Co doping. J. Solid State Electrochem. 2012, 16, 1271–1277. [Google Scholar] [CrossRef]
- Rangappa, D.; Sone, K.; Kudo, T.; Honma, I. Directed growth of nanoarchitectured LiFePO4 electrode by solvothermal synthesis and their cathode properties. J. Power Sources 2010, 195, 6167–6171. [Google Scholar] [CrossRef]
- Yi, D.W.; Cui, X.M.; Li, N.L.; Zhang, L.; Yang, D.Y. Enhancement of electrochemical performance of LiFePO4/C by Ga coating. ACS Omega 2020, 5, 9752–9758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Samples | a (nm) | b (nm) | c (nm) | V (nm3) | C20 (mAh·g−1) | C−20 (mAh·g−1) | Rct (Ω) |
---|---|---|---|---|---|---|---|
without OA | 1.0322 | 0.6002 | 0.4696 | 0.2909 | 133 | 68 | 444 |
with OA | 1.0338 | 0.6007 | 0.4702 | 0.2916 | 161 | 102 | 221 |
Rs | CPE | Rct | Chi-Squared | |
---|---|---|---|---|
with OA | 5.3 | 8.7 × 106 | 221 | 9.7 × 104 |
without OA | 9.3 | 1.3 × 105 | 444 | 1.7 × 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Liu, Y.; Zhu, J.; Jia, P.; Zhang, L.; Zhou, W.; Jiao, T. Surfactant-Assisted Synthesis of Micro/Nano-Structured LiFePO4 Electrode Materials with Improved Electrochemical Performance. Materials 2022, 15, 8953. https://doi.org/10.3390/ma15248953
Qiao Y, Liu Y, Zhu J, Jia P, Zhang L, Zhou W, Jiao T. Surfactant-Assisted Synthesis of Micro/Nano-Structured LiFePO4 Electrode Materials with Improved Electrochemical Performance. Materials. 2022; 15(24):8953. https://doi.org/10.3390/ma15248953
Chicago/Turabian StyleQiao, Yuqing, Ying Liu, Jianguo Zhu, Peng Jia, Liqiao Zhang, Wei Zhou, and Tifeng Jiao. 2022. "Surfactant-Assisted Synthesis of Micro/Nano-Structured LiFePO4 Electrode Materials with Improved Electrochemical Performance" Materials 15, no. 24: 8953. https://doi.org/10.3390/ma15248953
APA StyleQiao, Y., Liu, Y., Zhu, J., Jia, P., Zhang, L., Zhou, W., & Jiao, T. (2022). Surfactant-Assisted Synthesis of Micro/Nano-Structured LiFePO4 Electrode Materials with Improved Electrochemical Performance. Materials, 15(24), 8953. https://doi.org/10.3390/ma15248953