Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Microstructure of Large As-Rolled Plate
3.2. Microstructural Evolution and Tensile Properties after Aging Heat Treatment
3.3. LCF Properties
4. Conclusions
- After the rolling process, the Fe-Mn-Al-C-based lightweight steel that was successfully manufactured as a 1.5-ton class plate showed a fine and uniform austenitic structure. After annealing and aging heat treatments, κ-carbides with a size of several nm were uniformly precipitated within the grain and on the grain boundaries.
- The aging heat-treated lightweight steel exhibited a cyclic softening behavior during the LCF test and the LCF life was predicted using the Coffin–Manson equation.
- The LCF life of the lightweight steel over the total strain amplitude range of 0.5–1.2% was three times longer than that of the commercial 12% Cr steel that is currently used in steam turbines.
- The localized planar dislocation glide by the κ-carbide minimized the entanglement among dislocations, and this characteristic dislocation movement extended the LCF life of the lightweight steel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frommeyer, G.; Brüx, U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels. Steel Res. Int. 2006, 77, 627–633. [Google Scholar] [CrossRef]
- Choi, K.; Seo, C.H.; Lee, H.; Kim, S.K.; Kwak, J.H.; Chin, K.G.; Park, K.T.; Kim, N.J. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel. Scripta Mater. 2010, 63, 1028–1031. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scripta Mater. 2013, 68, 343–347. [Google Scholar] [CrossRef]
- Sutou, Y.; Kamiya, N.; Umino, R.; Ohnuma, L.; Ishida, K. High-strength Fe-20Mn-Al-C-based alloys with low density. ISIJ Int. 2010, 50, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Park, S.; Lee, J.; Moon, J.; Lee, T.H.; Jeong, K.J.; Han, H.N.; Shin, J. Effect of cooling rate on the microstructure and mechanical properties of Fe-M-Al-C light-weight steels. Korean J. Met. Mater. 2017, 55, 825–835. [Google Scholar]
- Lee, K.; Park, S.; Lee, J.; Moon, J.; Kang, J.; Kim, D.; Suh, J.; Han, H.N. Effect of aging treatment on microstructure and intrinsic mechanical behavior of Fe-31.4Mn-11.4Al-0.89C lightweight steel. J. Alloy Compd. 2016, 656, 805–811. [Google Scholar] [CrossRef]
- Acselrad, O.; Kalashnikov, I.S.; Silva, E.M.; Khadyev, M.S.; Simao, R.A. Diagram of phase transformation in the austenite of hardened alloy Fe-28%Mn-8.5%Al-1%C-1.25%Si as a result of aging due to isothermal heating. Met. Sci. Heat Treat. 2006, 48, 543–553. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.K.; Chowdhury, S.G.; Das, G.; Chattoraj, I.; Das, S.K.; Bhattacharya, D.K. An investigation of the failure of low pressure steam turbine blades. Eng. Fail. Anal. 1998, 5, 181–193. [Google Scholar] [CrossRef]
- Booysen, C.; Heyns, P.S.; Hindley, M.P.; Scheepers, R. Fatigue life assessment of a low pressure steam turbine blade during transient resonant conditions using a probabilistic approach. Int. J. Fatigue 2015, 73, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A. Nonlinear Fracture Mechanics for Engineers; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Moon, J.; Park, S.J.; Lee, C.; Han, H.N.; Lee, T.H.; Lee, C.H. Microstructure evolution and age-hardening behavior of microalloyed austenitic Fe-30Mn-9Al-0.9C light-weight steel. Met. Mater. Trans. A 2017, 48A, 4500–4510. [Google Scholar] [CrossRef]
- Haase, C.; Zehnder, C.; Ingendahl, T.; Bikar, A.; Tang, F.; Hallstedt, B.; Hu, W.; Bleck, W.; Monodove, D.A. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater. 2017, 122, 332–343. [Google Scholar] [CrossRef]
- Kim, C.W.; Kwon, S.I.; Lee, B.H.; Moon, J.O.; Park, S.J.; Lee, J.H.; Hong, H.U. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocationsin a cast Si added FeMnAlC lightweight steel. Mater. Sci. Eng. A 2016, 673, 108–113. [Google Scholar] [CrossRef]
- Yan, M.; Li, Y.; Li, H.; Sun, Y.; Qin, H.; Zheng, Q. Preparation and ladle slag resistance mechanism of MgAlON bonded Al2O3-MgAlON-Zr2Al3C4-(Al2Co)1-x(AlN)x refractories. Ceram. Int. 2019, 45, 346–353. [Google Scholar] [CrossRef]
- Shin, J.; Rim, G.; Kim, S.; Jang, J.H.; Park, S.; Lee, J. Effects of aging heat-treatment on dynamic strain aging behavior in high-Mn lightweight steel. Mater. Charact. 2020, 164, 110316. [Google Scholar] [CrossRef]
- Shin, J.; Jang, J.H.; Kim, S.; Park, S.; Lee, J. Dynamic strain aging in Fe-Mn-Al-C lightweight steel. Phil. Mag. Lett. 2020, 100, 355–364. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, W.; Zhao, H.; He, J.; Wang, K.; Zhou, B.; Ponge, D.; Raabe, D.; Li, Z. Formation mechanism of κ-carbides and deformation behavior in Si-alloyed FeMAlC lightweight steels. Acta Mater. 2020, 198, 258–270. [Google Scholar] [CrossRef]
- Yao, M.J.; Welsch, E.; Ponge, D.; Haghighat, S.M.H.; Sandlöbes, S.; Choi, P.; Herbig, M.; Bleskov, I.; Hickel, T.; Lipinska-Chwalek, M.; et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel. Acta. Mater. 2017, 140, 258–273. [Google Scholar] [CrossRef]
- Dieter, G.E. Mechanical Metallurgy; McGraw-Hill: London, UK, 1988. [Google Scholar]
- Shin, J.; Kim, Y.; Lee, J. Effects of grain size on the fatigue properties in cold-expanded austenitic HNSs. Met. Mater. Int. 2018, 24, 1412–1421. [Google Scholar] [CrossRef]
- Kanazawa, K.; Yamaguchi, K.; Kobayashi, K. The temperature dependence of low cycle fatigue behavior of martensitic stainless steels. Mater. Sci. Eng. A 1979, 40, 89–96. [Google Scholar] [CrossRef]
- Degallaix, G.; Vogt, J.B.; Foct, J. Low cycle fatigue of a 12% Cr martensitic stainless steel: The role of microstructure. In Low Cycle Fatigue and Elasto-Plastic Behavior of Materials; Springer: Berlin/Heidelberg, Germany, 1987; pp. 95–100. [Google Scholar]
- Jeong, I.H.; Park, Y.M.; Bae, M.K.; Kim, C.H.; Kim, T.G. A study on low-cycle fatigue of high Chromium heat-resistant steel. Mod. Phys. Lett. B 2019, 33, 1940034. [Google Scholar] [CrossRef]
- Lefebvre, D.; Ellyin, F. Cyclic response and inelastic strain energy in low cycle fatigue. Int. J. Fatigue 1984, 6, 9–15. [Google Scholar] [CrossRef]
- Mishnev, R.; Dudova, N.; Kaibyshev, R. Effect of the strain rate on the low cycle fatigue behavior of a 10Cr-2W-Mo-3CO-NbV steel at 650 °C. Int. J. Fatigue 2017, 100, 113–125. [Google Scholar] [CrossRef]
Composition | C | Si | Mn | P | S | Al |
---|---|---|---|---|---|---|
wt.% | 0.90 | 0.28 | 29.0 | 0.026 | 0.001 | 7.9 |
0.2% Y.S. (MPa) | T.S. (MPa) | El. (%) | R.A. (%) | |
---|---|---|---|---|
As-annealed | 454 | 768.8 | 89 | 75 |
Aged | 850 | 1027.3 | 27 | 44 |
Parameters | b | C | ||
---|---|---|---|---|
Aged | 0.8859 | −0.0997 | 94.9139 | −0.5934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.-H.; Song, J.-Y.; Kim, S.-D.; Park, S.-J.; Ma, Y.-W.; Lee, J.-W. Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel. Materials 2022, 15, 8909. https://doi.org/10.3390/ma15248909
Shin J-H, Song J-Y, Kim S-D, Park S-J, Ma Y-W, Lee J-W. Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel. Materials. 2022; 15(24):8909. https://doi.org/10.3390/ma15248909
Chicago/Turabian StyleShin, Jong-Ho, Jeon-Young Song, Sung-Dae Kim, Seong-Jun Park, Young-Wha Ma, and Jong-Wook Lee. 2022. "Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel" Materials 15, no. 24: 8909. https://doi.org/10.3390/ma15248909
APA StyleShin, J.-H., Song, J.-Y., Kim, S.-D., Park, S.-J., Ma, Y.-W., & Lee, J.-W. (2022). Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel. Materials, 15(24), 8909. https://doi.org/10.3390/ma15248909