Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions
Abstract
1. Introduction
2. Materials and Methods
2.1. Operational Concerns Regarding Water Vapour Generation Inside Buildings
- Wp—water vapour permeability
- δ—water vapour permeability coefficient,
- d—material layer thickness, [m]
- δ0—air vapour permeability (δ0 = 2× 10−4),
- µ—diffusion resistance coefficient, [unitless]
- Sd—thickness of the equivalent air layer, [m]
2.2. Flexible Waterproofing Materials Used in Ventilated Partitions
2.3. Case Study
- −
- variable properties of the material depending on humidity and temperature;
- −
- additional thermal transport processes, such as latent heat transport by water vapour flows;
- −
- additional heat sources due to solar radiation;
- −
- parameters dependent on the environmental conditions, such as wind and rain action.
2.4. Calculation Variants
- −
- Variant 1—PE foil under the grate for fixing plasterboards. Roof ventilation equal to 20 changes per hour (Figure 3).
- −
- Variant 2—PE foil above the grate for fixing plasterboards. Roof ventilation equal to 20 changes per hour (Figure 4).
- −
- Variant 3—PE foil under the grate for fixing plasterboards. Mineral wool fills the air gap formed by the grate. Roof ventilation equal to 20 changes per hour (Figure 5).
- −
- Variant 4—no PE foil in the arrangement of layers. Roof ventilation equal to 20 changes per hour (Figure 6).
- −
- Variant 5—no PE foil in the arrangement of layers. No roof ventilation (Figure 7).
3. Results
- −
- LIM B I: bio-utilizable substrate, i.e., wallpaper, plasterboard, products made from easily degradable material, material for permanently elastic joints, etc.;
- −
- LIM B II: substrates with porous structure, i.e., plasters, mineral building materials, some types of wood, insulating materials not belonging to group I, etc. If strongly contaminated, these materials belong to group I [69].
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szymczak-Graczyk, A.; Laks, I.; Ksit, B.; Ratajczak, M. Analysis of the Impact of Omitted Accidental Actions and the Method of Land Use on the Number of Construction Disasters (a Case Study of Poland). Sustainability 2021, 13, 618. [Google Scholar] [CrossRef]
- Ksit, B.; Szymczak-Graczyk, A.; Nazarewicz, B. Diagnostics and renovation of moisture affected historic buildings. Civ. Environ. Eng. Rep. 2022, 32, 59–73. [Google Scholar] [CrossRef]
- Karagiannis, N.; Karoglou, M.; Bakolas, A.; Moropoulou, A. Effect of temperature on water capillary rise coefficient of building materials. Build. Environ. 2016, 106, 402–408. [Google Scholar] [CrossRef]
- Frössel, F. Osuszanie Murów i Renowacja Piwnic [Wall Drainage and Cellar Renovation]; Polcen Sp. z o.o.: Warsaw, Poland, 2007. [Google Scholar]
- Nowogońska, B. Intensity of damage in the aging process of buildings. Arch. Civ. Eng. 2020, 66, 19–31. [Google Scholar]
- Szymczak-Graczyk, A.; Ksit, B.; Laks, I. Operational Problems in Structural Nodes of Reinforced Concrete Constructions. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 032096. [Google Scholar] [CrossRef]
- Weber, J. Baudiagnose und Geräte. In Bauwerksabdichtung in der Altbausanierung: Verfahren und Juristische Betrachtungsweise; Springer Vieweg: Wiesbaden, Germany, 2012; pp. 99–135. [Google Scholar]
- PN-EN ISO 7730; Ergonomics of the Thermal Environment. Analytical Determination and Interpretation of Thermal Comfort with the Use of PMV and PPD Indexes and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- Chojnacka, A. Wybrane aspekty dotyczące komfortu termicznego w pomieszczeniach [Selected aspects of thermal comfort in rooms]. Ciepłownictwo Ogrzew. Went. 2007, 4, 8–13. [Google Scholar]
- Mijakowski, M. Podstawy opisu zjawisk kształtujących wilgotność powietrza w pomieszczeniach [Basics of description of phenomena shaping indoor air humidity]. Ciepłownictwo Ogrzew. Went. 2001, 10, 16–19. [Google Scholar]
- Pogorzelski, J.A. Fizyka cieplna budowli. In Thermal Physics of Buildings; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1976. [Google Scholar]
- Pogorzelski, J.A. Zagadnienia cieplno-wilgotnościowe przegród budowlanych [Thermal and humidity issues of building partitions]. In Budownictwo Ogólne. Fizyka Budowli [General Construction Physics of Structures]; Klemm, P., Ed.; Arkady: Warsaw, Poland, 2005; Volume 2. [Google Scholar]
- Telejko, M.; Zender-Świercz, E. Attempt to improve indoor air quality in kindergartens. Procedia Eng. 2016, 161, 1704–1709. [Google Scholar] [CrossRef]
- Zender–Świercz, E. Analysis of the impact of the parameters of outside air on the condition of indoor air. Int. J. Environ. Sci. Technol. 2017, 14, 1583–1590. [Google Scholar] [CrossRef]
- Szymczak-Graczyk, A.; Gajewska, G.; Laks, I.; Kostrzewski, W. Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings. Energies 2022, 15, 2626. [Google Scholar] [CrossRef]
- Alizamir, M.; Kim, S.; Zounemat-Kermani, M.; Heddam, S.; Kim, N.W.; Singh, V.P. Kernel Extreme Learning Machine: An Efficient Model for Estimating Daily Dew Point Temperature Using Weather Data. Water 2020, 12, 2600. [Google Scholar] [CrossRef]
- Cichoń, A.; Worek, W. Analytical Investigation of a Novel System for Combined Dew Point Cooling and Water Recovery. Appl. Sci. 2021, 11, 1481. [Google Scholar] [CrossRef]
- Heßler, M. Unikanie kondensacji i pleśni [Avoiding Condensation and Mould]. Świat Szkła 2013, 12, 30–32. [Google Scholar]
- Zyska, B. Zagrożenia Biologiczne w Budynku [Biological Hazards in the Building]; Arkady: Warsaw, Poland, 1999. [Google Scholar]
- Gutarowska, B.; Piotrowska, M.; Koziróg, A. Grzyby w Budynkach. Zagrożenia, Ochrona, Usuwanie [Fungi in Buildings. Threats, Protection, Deletion]; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2019. [Google Scholar]
- Szymczak-Graczyk, A.; Walczak, Z.; Ksit, B.; Szyguła, Z. Multi criteria diagnostics of historic buildings with the use of 3D laser scanning (a case study). Bull. Pol. Acad. Sci. Tech. Sci. 2022, 70, e140373. [Google Scholar] [CrossRef]
- Muselli, M.; Carvajal, D.; Beysens, D.A. A Study to Explore the Dew Condensation Potential of Cars. Atmosphere 2022, 13, 65. [Google Scholar] [CrossRef]
- Geryło, R. Powierzchniowa kondensacja pary wodnej—Przegrody przeszklone [Surface condensation of water vapour—Glazed partitions]. Świat Szkła 2010, 12, 23–25. [Google Scholar]
- Macieik, L. Zawilgocenia ściany mieszkania na skutek złej eksploatacji [Moisture in the wall of the apartment as a result of poor exploitation]. Warstwy Dachy Ściany 2008, 1, 90–91. [Google Scholar]
- PN-83/B-03430; Ventilation in Residential Buildings, Collective Residence, and Public Utility Buildings. Requirements. Polski Komitet Normalizacyjny: Warsaw, Poland, 2000.
- EN 15251:2007; Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. International Energy Agency: Paris, France, 2007.
- Śliwowski, L. Mikroklimat Wnętrz i Komfort Cieplny Ludzi w Pomieszczeniach [Microclimate of Interiors and Thermal Comfort of People Indoors]; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 1999. [Google Scholar]
- Baumgarth, S.; Hörner, B.; Reeker, J. Poradnik Klimatyzacji [Air Conditioning Handbook]; SYSTHERM: Poznań, Poland, 2010; Volume 1. [Google Scholar]
- Traczyk, W.Z.; Trzebski, A. Fizjologia Człowieka z Elementami Fizjologii Klinicznej i Stosowanej [Human Physiology with Elements of Clinical and Applied Physiology]; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 2004. [Google Scholar]
- Fischer-Uhlik, H. Mikroklimat pomieszczeń. Cz. 1. [Microclimate of rooms. Part 1]. Świat Szkła 2002, 10, 32–36. [Google Scholar]
- Fischer-Uhlik, H. Mikroklimat pomieszczeń. Cz. 2. [Microclimate of rooms. Part 2]. Świat Szkła 2002, 11, 36–38. [Google Scholar]
- Charkowska, A. Komfort cieplny w środowisku zimnym, termicznie umiarkowanym i gorącym [Thermal comfort in a cold, thermally moderate and hot environment]. Chłodnictwo Klim. 2010, 10, 48–52. [Google Scholar]
- Śliwowski, L.; Lis, A. Wybrane problemy komfortu cieplnego osób w pomieszczeniach [Selected problems of thermal comfort of people indoors]. Ciepłownictwo Ogrzew. Went. 2002, 33, 45–49. [Google Scholar]
- Adrian, Ł. Klimatyzacja i wentylacja budynków użyteczności publicznej w aspekcie komfortu cieplnego [Air conditioning and ventilation of public buildings in terms of thermal comfort]. Chłodnictwo Klim. 2010, 11, 18–25. [Google Scholar]
- Young, T. III An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Patoka, K. Regulatory pary w przegrodach dachowych [Steam regulators in roof partitions]. Mater. Bud. 2021, 584, 32–34. [Google Scholar]
- Zieliński, J.; Przybylski, J. Ile wody tracimy z oddechem [How much water do we lose with the breath]. Pneumonol. Alergol. Pol. 2002, 80, 339–342. [Google Scholar]
- Styrofoam Manufacturers Association Guide. Available online: http://www.styropiany.pl/poradnik/poradnik_03_fiz_budowli.pdf (accessed on 30 June 2022).
- Available online: http://ekoenergia.dzien-e-mail.org/wentylacja/22-powietrzew-pomieszczeniach/265-wilgo-w-pomieszczeniach-mieszkalnych.html (accessed on 30 June 2022).
- Trechsel-Heinz, R. Moisture Control in Buildings; ASTM Manual Series: Philadelphia, PA, USA, 1994. [Google Scholar]
- Škerget, L.; Tadeu, A.; Almeida, J. Unsteady Coupled Moisture and Heat Energy Transport through an Exterior Wall Covered with Vegetation. Energies 2021, 14, 4422. [Google Scholar] [CrossRef]
- Patoka, K. Poradnik. Wentylacja Dachów i Stropodachów [Handbook. Roof and Flat Roof Ventilation]; Dom Wydawniczy MEDIUM: Warsaw, Poland, 2010. [Google Scholar]
- Moisture—A Factor Affecting the Building. Available online: http://www.ogrzewnictwo.pl/artykuly/inne/wilgoc-czynnikoddzialywujacy-na-budynek (accessed on 30 June 2022).
- Patoka, K.; Wiluś, S. Zasady doboru warstw wstępnego krycia dla dachów skośnych. Cz. 3. Sposób wykorzystania klas szczelności. Wentylacja dachów [Principles of selecting the initial covering layers for pitched roofs. Part 3. The way of using the tightness classes. Roof ventilation]. Izolacje 2018, 23, 88–92. [Google Scholar]
- Kain, G.; Idam, F.; Federspiel, F.; Réh, R.; Krišťák, Ľ. Suitability of Wooden Shingles for Ventilated Roofs: An Evaluation of Ventilation Efficiency. Appl. Sci. 2020, 10, 6499. [Google Scholar] [CrossRef]
- Wierzelewski, P. Zastosowanie folii w konstrukcjach dachów skośnych [Application of foil in pitched roof structures]. Warstwy Dachy Ściany 2004, 1, 103–105. [Google Scholar]
- Patoka, K. Funkcje i podział folii wstępnego krycia [Functions and division of the initial covering foil]. Mater. Bud. 2003, 5, 52–53. [Google Scholar]
- Patoka, K. Folie wstępnego krycia—Niezbędny element nowoczesnego dachu spadzistego [Initial covering foils—An indispensable element of a modern pitched roof]. Mater. Bud. 2000, 2, 77–78. [Google Scholar]
- Patoka, K. Funkcje warstw paroizolacyjnych w przegrodach dachowych [Functions of vapour barrier layers in roof partitions]. Mater. Bud. 2021, 582, 32–34. [Google Scholar]
- DIN 4108-3:2001-07; Thermal Insulation and Energy Saving in Buildings. Part 3. Protection Against Moisture Depending on Climatic Conditions, Requirements, Calculation Method and Guidelines for Design and Execution. Beuth Publishing Din: Berlin, Germany, 2001.
- PN-EN ISO 6946:2017; Building Components and Building Elements. Thermal Resistance and Heat Transfer Coefficient. Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2017.
- PN-EN ISO 13788:2017; Heat and Humidity Properties of Building Components and Building Elements. Internal Surface Temperature Necessary to Avoid Critical Surface Moisture and Interlayer Condensation. Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2017.
- PN-EN ISO 9346:2009; Heat and Humidity Performance Properties of Buildings and Construction Materials. Physical Quantities Concerning Mass Transfer. Dictionary. International Organization for Standardization: Geneva, Switzerland, 2009.
- Reguły Dekarskie Niemieckiego Związku Dekarzy. Instrukcja. Instrukcja Izolacji Cieplnej Dachów [Roofing Rules of the German Roofers’ Association. Instruction. Thermal Insulation of Roofs and Walls]; Wydawnictwo Rudolf Müller: Cologne, Germany, 1997.
- Reguły Dekarskie Niemieckiego Związku Dekarzy. Instrukcja. Izolacja Cieplna Dachów i Ścian [Roofing Rules of the German Roofers’ Association. Instruction. Thermal Insulation of Roofs and Walls]; Wydawnictwo Rudolf Müller: Cologne, Germany, 2004.
- Patoka, K. Zmiany w zasadach wentylowania dachów w wytycznych Związku Dekarzy Niemieckich [Changes in the rules of roof ventilation in the guidelines of the Association of German Roofers]. Mater. Bud. 2018, 546, 38–40. [Google Scholar]
- Dictionary of Roofing Terms and Names. Available online: https://static.dekarz.com.pl/default/TDFvI9lMPSDSlownikdekar.pdf (accessed on 30 June 2022).
- Kłopocka, L. Wentylacja Dachu a Analiza Bilansu Pary Wodnej w Budynku Mieszkalnym [Roof Ventilation and the Analysis of Water Vapour Balance in a Residential Building]. Bachelor’s Thesis, Politechnika Poznańska, Poznań, Poland, 2015. [Google Scholar]
- Orlik-Kożdoń, B. Microclimate Conditions in Rooms: Their Impact on Mold Development in Buildings. Energies 2020, 13, 4492. [Google Scholar] [CrossRef]
- van Hees, R.P.J.; Koek, J.A.G. Treatment of rising damp. A laboratory evaluation method. In Proceedings of the International Colloquium on Methods of Evaluating Products for the Conservation of Porous Building Materials in Monuments, Rome, Italy, 19–21 June 1995; pp. 403–418. [Google Scholar]
- Patoka, K. Wentylacja membran wstępnego krycia (MWK) [Ventilation of initial covering membranes (ICM)]. Warstwy Dachy Ściany 2008, 3, 28–31. [Google Scholar]
- Ksit, B.; Szymczak-Graczyk, A. Rare weather phenomena and the work of large-format roof coverings. Civ. Environ. Eng. Rep. 2019, 29, 123–133. [Google Scholar] [CrossRef]
- Weber, C. Membrany dachowe—Kluczowe zagadnienia dotyczące starzenia i trwałości [Roofing Membranes—Key Aging and Durability Issues]. Warstwy Dachy Ściany 2008, 2, 120–121. [Google Scholar]
- Patoka, K. Ocena właściwości membran wstępnego krycia [Assessment of the properties of initial covering membranes]. Mater. Bud. 2008, 6, 39–41. [Google Scholar]
- Horta, A. Sekrety membran dachowych [Secrets of Roofing Membranes]. Warstwy Dachy Ściany 2005, 3, 68–70. [Google Scholar]
- Podeszwa, M. Cele i zasady stosowania folii i membran dachowych [Objectives and principles of using roofing membranes and foils]. Warstwy Dachy Ściany 2009, 2, 86–87. [Google Scholar]
- Olaoye, T.S.; Dewsbury, M.; Künzel, H. Laboratory Measurement and Boundary Conditions for the Water Vapour Resistivity Properties of Typical Australian Impermeable and Smart Pliable Membranes. Buildings 2021, 11, 509. [Google Scholar] [CrossRef]
- Künzel, H.M. One- and Two-Dimensional Calculation Using Simple Parameters. In Simultaneous Heat and Moisture Transport in Building Components; Fraunhofer IRB Verlag: Stuttgart, Germany, 1995. [Google Scholar]
- Available online: https://wufi.de/download/WUFI41_help_e.pdf (accessed on 30 June 2022).
- Ksit, B.; Gaczek, M. Raport z Badań Stropodachu Eliptycznego [Report on the Study of an Elliptical Flat Roof]; Politechnika Poznańska: Poznań, Poland, 2022. [Google Scholar]
- Zender-Świercz, E. Microclimate in Rooms Equipped with Decentralized Façade Ventilation Device. Atmosphere 2020, 11, 800. [Google Scholar] [CrossRef]
- Bunkholt, N.S.; Säwén, T.; Stockhaus, M.; Kvande, T.; Gullbrekken, L.; Wahlgren, P.; Lohne, J. Experimental Study of Thermal Buoyancy in the Cavity of Ventilated Roofs. Buildings 2020, 10, 8. [Google Scholar] [CrossRef]
- Geryło, R.; Młoźniak, D.; Pogorzelski, J.A. Wybrane problemy numerycznej symulacji pól temperatury w Zakładzie Fizyki Cieplnej ITB [Selected problems of numerical simulation of temperature fields in the Department of Thermal Physics ITB]. Work. Inst. Tech. Bud. 2000, 29, 24–37. [Google Scholar]
Humid Air Temperature RH = 100% [°C] | Water Vapour Content [g/m3] | Humid Air Temperature RH = 100% [°C] | Water Vapour Content [g/m3] | Humid Air Temperature RH = 100% [°C] | Water Vapour Content [g/m3] |
---|---|---|---|---|---|
−20 | 0.9 | 6 | 7.3 | 21 | 18.4 |
−15 | 1.4 | 8 | 8.3 | 22 | 19.5 |
−10 | 2.1 | 10 | 9.4 | 23 | 20.6 |
−8 | 2.5 | 12 | 10.7 | 24 | 21.8 |
−6 | 3.0 | 14 | 12.1 | 25 | 23.1 |
−4 | 3.5 | 16 | 13.7 | 26 | 24.4 |
−2 | 4.1 | 17 | 14.5 | 28 | 27.2 |
0 | 4.8 | 18 | 15.4 | 30 | 30.4 |
2 | 5.6 | 19 | 16.3 | 40 | 51.1 |
4 | 6.4 | 20 | 17.3 | 50 | 82.3 |
Source of Humidity | Water Vapour Emission in 24 h [g] | Amount of Water Vapour Reaching the Attic in 24 h [g] | |
---|---|---|---|
with 10× Exchange | with 25× Exchange | ||
Respiration and sweat evaporation | 5000 | 3500 | 2500 |
Use of a residential building | 13,255 | 9279 | 9279 |
Potted plants (5–7 plants per apartment) | 500 | 350 | 250 |
Total | 18,755 g | 13,129 g | 12,029 g |
Amount of Water Vapour Reaching the Attic in 24 h at 80% Relative Humidity and Air Temperature 20 °C [g] | Amount of Water Vapour Reaching the Attic in 24 h Generated in a Residential Building [g] | Total [g] | |
---|---|---|---|
10× exchange | 40,689.6 | 13,129.0 | 53,818.6 |
25× exchange | 72,660.0 | 12,029.0 | 84,689.0 |
Absolute Humidity [g/m3] | Saturation State at 20 °C [g/m3] | Relative Humidity [%] | |
---|---|---|---|
10× exchange | 18.31 | 17.30 | 100% supersaturation state |
25× exchange | 16.13 | 93% |
ICF—Initial Covering Foils (Low Vapour-Permeable) | ICM—Initial Covering Membranes (Highly Vapour-Permeable) | ||
---|---|---|---|
Vapour-tight | Vapour-permeable | Light | Screens |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksit, B.; Szymczak-Graczyk, A.; Pilch, R. Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions. Materials 2022, 15, 8257. https://doi.org/10.3390/ma15228257
Ksit B, Szymczak-Graczyk A, Pilch R. Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions. Materials. 2022; 15(22):8257. https://doi.org/10.3390/ma15228257
Chicago/Turabian StyleKsit, Barbara, Anna Szymczak-Graczyk, and Roman Pilch. 2022. "Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions" Materials 15, no. 22: 8257. https://doi.org/10.3390/ma15228257
APA StyleKsit, B., Szymczak-Graczyk, A., & Pilch, R. (2022). Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions. Materials, 15(22), 8257. https://doi.org/10.3390/ma15228257